精英家教网 > 高中数学 > 题目详情
6.已知直线y=k(x-m)与抛物线y2=2px(p>0)交于A、B两点,O为坐标原点,OA⊥OB,OD⊥AB于D,点D在曲线x2+y2-4x=0上,则p=2.

分析 设出D的坐标,求出OD的斜率,利用OD⊥AB于D,动点D的坐标满足方程x2+y2-4x=0,确定x的值,代入k•k′=-1,化简即可求出m的值.

解答 解:设A(x1,y1),B(x2,y2
由$\left\{\begin{array}{l}{y=k(x-m)}\\{{y}^{2}=2px}\end{array}\right.$,整理得:k2x2-(2k2m+2p)x+k2m2=0,
由韦达定理可知:x1•x1=m2
由OA⊥OB,则$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,即x1•x1+y1•y1=0,即m2-2pm=0,解得:m=2p,
∵点D在直线AB:y=k(x-m)上,
∴设D坐标为(x,k(x-m)),
则OD的斜率为k′=$\frac{k(x-m)}{x}$;
又∵OD⊥AB,AB的斜率为k,
∴k•k′=$\frac{{k}^{2}(x-m)}{x}$=-1,即k(x-m)=-$\frac{x}{k}$;
又∵动点D的坐标满足x2+y2-4x=0,即x2+[k(x-m)]2-4x=0,
将k(x-m)=-$\frac{x}{k}$代入上式,得x=$\frac{4{k}^{2}}{{k}^{2}+1}$;
再把x代入到$\frac{{k}^{2}(x-m)}{x}$=-1中,
化简得4k2-mk2+4-m=0,即(4-m)•(k2+1)=0,
∵k2+1≠0,
∴4-m=0,
∴m=4.
∴p=2
故答案为:2.

点评 本题考查了直线与圆锥曲线的综合应用问题,也考查了分析问题和解决问题的能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.设随机变量ξ服从正态分布N(4,7),若P(ξ>a+2)=P(ξ<a-2),则a=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知f(x)=x2-1,g(x)=3x+1,则g[f(0)]=-2,f[g(x)]=9x2+6x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知C${\;}_{6}^{x}$+C${\;}_{6}^{x-1}$=C${\;}_{7}^{x-3}$,则x=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数$f(x)=\frac{1}{3}{x^3}-{a^2}x+\frac{1}{2}a$(a∈R).
(Ⅰ)当a=1时,x∈[-1,2],求f(x)的最值.
(Ⅱ)若对任意x∈[0,+∞),有f(x)>0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知圆C(m,0)(m<3),半径为$\sqrt{5}$,A(3,1)是圆C与椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个公共点,且F1,F2分别是椭圆E的左、右焦点.
(1)求实数m的值;
(2)若点P(4,4),试探究斜率为k的直线PF1与圆C能否相切,若能,求出椭圆E和直线PF1的方程,若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点为F1(-1,0),且长轴长是短轴长的$\sqrt{2}$倍.
(1)求椭圆M的方程;
(2)若斜率为$\frac{1}{2}$的直线l与椭圆M位于x轴上方的部分交于C,D两点,过C,D两点分别做CE,DF垂直x轴于E,F两点,若四边形CEFD的面积为$\frac{2\sqrt{2}}{3}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.过抛物线C:x=ay2(a>0)的焦点F作直线l交抛物线C于P,Q两点,若|FP|=p,|FQ|=q,则$\frac{1}{p}$+$\frac{1}{q}$=(  )
A.2aB.$\frac{1}{2a}$C.4aD.$\frac{4}{a}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知抛物线y2=2px(p>0)的焦点为F,过F的直线l与抛物线交于A,B两点,A,B在抛物线准线上的射影分别为A1,B1,点M是A1B1的中点,若|AF|=m,|BF|=n,则|MF|=(  )
A.m+nB.$\frac{m+n}{2}$C.$\sqrt{mn}$D.mn

查看答案和解析>>

同步练习册答案