分析 (1)根据椭圆的性质分别求得a、b和c的值,即可写出椭圆的方程;
(2)设出C和D点坐标及直线方程,将直线方程代入椭圆方程,求得关于x的一元二次方程,利用根与系数的关系,求得x1+x2和x1•x2,代入直线方程求得y1+y2,进而求得x1-x2,利用梯形的面积公式,即可求得m的值,写出直线方程.
解答 解:(1)由椭圆的性质可知:c=1,2a=$\sqrt{2}$×2b,即a=$\sqrt{2}$b,
∵a2=b2+c2,
∴a=$\sqrt{2}$,b=1,c=1,
∴椭圆M的方程:$\frac{{x}^{2}}{2}+{y}^{2}=1$;
(2)由题意可知:设C(x1,y1),D(x2,y2),且x1>0,x2<0,直线l的方程为:y=$\frac{1}{2}$x+m,m>0,
∴$\left\{\begin{array}{l}{y=\frac{1}{2}x+m}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$,整理得:$\frac{3}{4}{x}^{2}+xm+{m}^{2}-1=0$,
由韦达定理可知:x1+x2=-$\frac{4}{3}m$,x1•x2=$\frac{4}{3}$(m2-1),
y1+y2=$\frac{1}{2}$(x1+x2)+2m=$\frac{4}{3}m$,
x1-x2=$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\frac{4}{3}$$\sqrt{3-2{m}^{2}}$,
四边形CEFD的面积为S=$\frac{1}{2}$(y1+y2)•(x1-x2)=$\frac{8}{9}$m$\sqrt{3-2{m}^{2}}$,
∴$\frac{8}{9}$m$\sqrt{3-2{m}^{2}}$=$\frac{2\sqrt{2}}{3}$,
整理得:16m4-24m2+9=0,解得:m2=$\frac{3}{4}$,
∴m=$\frac{\sqrt{3}}{2}$,
直线l的方程y=$\frac{1}{2}$x+$\frac{\sqrt{3}}{2}$.
点评 本昰考查直线和圆锥曲线的位置关系,解题时要认真审题,仔细解答,注意合理地进行等价转化,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{8}{3}$ | B. | 3 | C. | $\frac{16}{3}$ | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | $\frac{11}{5}$ | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com