精英家教网 > 高中数学 > 题目详情
13.已知函数$f(x)=-alnx+\frac{{2{a^2}}}{x}+x(a∈R)$.
(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)当a>0时,若函数f(x)在[1,e]上的最小值记为g(a),请写出g(a)的函数表达式.

分析 (1)求出函数的导数,求出f(1),f′(1)的值,代入切线方程即可;
(2)求出函数的导数,通过讨论a的范围,确定函数的单调区间,从而求出区间上的最小值即可.

解答 解:(1)∵$f(x)=-alnx+\frac{{2{a^2}}}{x}+x(a∈R)$,
∴${f^'}(x)=-\frac{a}{x}-\frac{{2{a^2}}}{x^2}+1$
当a=1时,$f(x)=-lnx+\frac{2}{x}+x,{f^'}(x)=-\frac{1}{x}-\frac{2}{x^2}+1$,
f(1)=3,k=f′(1)=-2,
曲线f(x)在点(1,f(1))处的切线方程为:
y-3=-2(x-1)即2x+y-5=0.…(3分)
(2)${f^'}(x)=-\frac{a}{x}-\frac{{2{a^2}}}{x^2}+1=\frac{{{x^2}-ax-2{a^2}}}{x^2}=\frac{(x-2a)(x+a)}{x^2}$,
∵a>0,x>0,由f′(x)>0得x>2a,由f′(x)<0得0<x<2a,
∴f(x)在(0,2a]上为减函数,在(2a,+∞)上为增函数.…(5分)
①当0<2a≤1即0<a≤$\frac{1}{2}$时,f(x)在[1,e]上为增函数,
∴g(a)=f(1)=2a2+1在(0,2a]上为减函数,在(2a,+∞)上为增函数.…(7分)
②当1<2a<e即$\frac{1}{2}$<a<$\frac{e}{2}$时,f(x)在[1,2a]上为减函数,在(2a,e]上为增函数,
∴g(a)=f(2a)=-aln(2a)+3a…(9分)
③当2a≥e即a≥$\frac{e}{2}$时,f(x)在[1,e]上为减函数,
∴$g(a)=f(e)=-a+\frac{{2{a^2}}}{e}+e$…(11分)
综上所述,$g(a)=\left\{\begin{array}{l}2{a^2}+1(0<a≤\frac{1}{2})\\-aln(2a)+3a(\frac{1}{2}<a<\frac{e}{2})\\-a+\frac{{2{a^2}}}{e}+e(a≥\frac{e}{2})\end{array}\right.$…(12分)

点评 本题考查了曲线的切线方程问题,考查函数的单调性、最值问题,考查导数的应用,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.设数列{an}的前n项和为Sn,满足a1=1,an+1=2Sn+n+1(n∈N*),数列{bn}满足b1=1,bn=an($\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n-1}}$)(n≥2,且n∈N*).
(1)求证数列{an+$\frac{1}{2}$}为等比数列,并求出an
(2)(1)证明:$\frac{1+{b}_{n}}{{b}_{n+1}}$=$\frac{{a}_{n}}{{a}_{n+1}}$(n≥2,且n∈N*).
(2)证明:(1+$\frac{1}{{b}_{1}}$)(1+$\frac{1}{{b}_{2}}$)…(1+$\frac{1}{{b}_{n}}$)<3(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知集合A={-3,-1,2},B={$\sqrt{a}$},且B⊆A,则实数a的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数$f(x)=\frac{1}{3}{x^3}-{a^2}x+\frac{1}{2}a$(a∈R).
(Ⅰ)当a=1时,x∈[-1,2],求f(x)的最值.
(Ⅱ)若对任意x∈[0,+∞),有f(x)>0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M,都有f(x)≥M成立,则称f(x)是D上的有下界函数,其中M称为函数f(x)的一个下界.已知函数f(x)=$\frac{{e}^{x}}{a}+\frac{a}{{e}^{x}}$(a>0).
(1)若函数f(x)为偶函数,求a的值;
(2)求函数f(x)在[lna,+∞)上所有下界构成的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点为F1(-1,0),且长轴长是短轴长的$\sqrt{2}$倍.
(1)求椭圆M的方程;
(2)若斜率为$\frac{1}{2}$的直线l与椭圆M位于x轴上方的部分交于C,D两点,过C,D两点分别做CE,DF垂直x轴于E,F两点,若四边形CEFD的面积为$\frac{2\sqrt{2}}{3}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知圆C的方程为x2+y2-2x-4y-1=0,直线l:ax+by-2=0(a>0,b>0),若直线l始终平分圆C,则ab的最大值为(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.抛物线C1:y2=4mx(m>0)的准线与x轴交于F1,焦点为F2,以F1、F2为焦点,离心率e=$\frac{1}{2}$的椭圆C2与抛物线C1的一个交点为P,且点P的横坐标为$\frac{2}{3}$.
(Ⅰ)求椭圆的方程和抛物线的方程;
(Ⅱ)过点F2的直线与椭圆C2相交于A、B两点,若$\overrightarrow{{F}_{2}B}$=-$\frac{1}{2}$$\overrightarrow{{F}_{2}A}$,试求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知AB是球O的直径,C,D为球面上两动点,AB⊥CD,若四面体ABCD体积的最大值为9,则球O的表面积为36π.

查看答案和解析>>

同步练习册答案