分析 (1)根据函数奇偶性的定义求出a的值即可;
(2)通过定义证明函数f(x)在区间[lna,+∞)上是增函数,求出函数的最小值,从而求出满足条件的集合即可.
解答 解:(1)函数f(x)=$\frac{{e}^{x}}{a}+\frac{a}{{e}^{x}}$(a>0)是R上的偶函数,f(-x)=f(x),
即$\frac{1}{a}$(ex-e-x)=a($\frac{1}{{e}^{-x}}$-$\frac{1}{{e}^{x}}$)=a(ex-e-x)在R恒成立,
∴$\frac{1}{a}$=a,解得:a=1,(a>0),
(2)在[lna,+∞)上任取x1,x2,且x1<x2,则
f(x1)-f(x2)=$\frac{1}{a}$(${e}^{{x}_{1}}$-${e}^{{x}_{2}}$)-a$\frac{{e}^{{x}_{1}}{-e}^{{x}_{2}}}{{e}^{{x}_{1}}{•e}^{{x}_{2}}}$=(${e}^{{x}_{1}}$-${e}^{{x}_{2}}$)•$(\frac{{e}^{{x}_{1}{+x}_{2}}{-a}^{2}}{a{•e}^{{x}_{1}{+x}_{2}}})$,
∵y=ex是增函数,lna≤x1<x2,
∴${e}^{{x}_{1}}$-${e}^{{x}_{2}}$<0,∴x1+x2>2lna=lna2,
∴${e}^{{x}_{1}{+x}_{2}}$>${e}^{l{na}^{2}}$=a2,∴${e}^{{x}_{1}{+x}_{2}}$-a2>0,
∵a•${e}^{{x}_{1}{+x}_{2}}$>0,
∴f(x1)-f(x2)<0,即f(x1)<f(x2),
∴函数f(x)在[lna,+∞)上是增函数,
∴f(x)min=f(lna)=$\frac{{e}^{lna}}{a}$+$\frac{a}{{e}^{lna}}$=2,
∴函数f(x)在[lna,+∞)上所有下界构成的集合是(-∞,2].
点评 本题考查了函数的奇偶性、单调性问题,考查函数单调性的定义的应用,是一道中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com