精英家教网 > 高中数学 > 题目详情
已知函数f(x)=(x-a)2(x-b)(a,b∈R,a<b).
(1)当a=1,b=2时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(2)设x1,x2是f(x)的两个极值点,x3是f(x)的一个零点,且x3≠x1,x3≠x2.证明:存在实数x4,使得x1,x2,x3,x4按某种顺序排列后构成等差数列,并求x4.
(1)y=x-2  (2),证明见解析

(1)解:当a=1,b=2时,f(x)=(x-1)2(x-2),
f′(x)= (x-1)(3x-5),
故f′(2)=1.
又f(2)=0,
所以f(x)在点(2,0)处的切线方程为y=x-2.
(2)证明:由题意得f′(x)=3(x-a)(x-),
由于a<b且a,b∈R,故a<,
所以f(x)的两个极值点为x=a,x=.
不妨设x1=a,x2=,
因为x3≠x1,x3≠x2,
且x3是f(x)的零点,
故x3=b.
又因为-a=2(b-),
x4=(a+)=,
此时a,,,b依次成等差数列,
所以存在实数x4满足题意,且x4=.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知
(1)若,求曲线在点处的切线方程;
(2)若 求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

据统计某种汽车的最高车速为120千米∕时,在匀速行驶时每小时的耗油量(升)与行驶速度(千米∕时)之间有如下函数关系:。已知甲、乙两地相距100千米。
(1)若汽车以40千米∕时的速度匀速行驶,则从甲地到乙地需耗油多少升?
(2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

圆心在曲线上,且与直线相切的面积最小的圆的方程是            

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

曲线在点处的切线方程为               .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某建筑公司要在一块宽大的矩形地面(如图所示)上进行开发建设,阴影部分为一公共设施建设不能开发,且要求用栏栅隔开(栏栅要求在一直线上),公共设施边界为曲线f(x)=1-ax2(a>0)的一部分,栏栅与矩形区域的边界交于点M、N,交曲线于点P,设P(t,f(t)).
 
(1)将△OMN(O为坐标原点)的面积S表示成t的函数S(t);
(2)若在t=处,S(t)取得最小值,求此时a的值及S(t)的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax3-3ax,g(x)=bx2+clnx,且g(x)在点(1,g(1))处的切线方程为2y-1=0.
(1)求g(x)的解析式;
(2)设函数G(x)=若方程G(x)=a2有且仅有四个解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数yf(x)图象在M(1,f(1))处的切线方程为yx+2,则f(1)+f′(1)
=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数处的导数为1,则 =
A.3B.C.D.

查看答案和解析>>

同步练习册答案