精英家教网 > 高中数学 > 题目详情
9.在空间直角坐标系中,点$P(1,\sqrt{2},\sqrt{3})$,过点P作平面xOy的垂线PQ,则垂足Q的坐标为(1,$\sqrt{2}$,0).

分析 根据题意画出图形,结合图形,即可求出点Q的坐标.

解答 解:空间直角坐标系中,点$P(1,\sqrt{2},\sqrt{3})$,过点P作平面xOy的垂线PQ,
垂足为Q,则点Q的坐标为(1,$\sqrt{2}$,0);
如图所示.

故答案为:$(1,\sqrt{2},0)$.

点评 本题考查了空间直角坐标系的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.若函数f(x)在区间A上,对?a,b,c∈A,f(a),f(b),f(c)为一个三角形的三边长,则称函数f(x)为“三角形函数”.已知函数f(x)=xlnx+m在区间$[{\frac{1}{e^2},e}]$上是“三角形函数”,则实数m的取值范围为($\frac{{e}^{2}+2}{e}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,在三棱柱ABC-A1B1C1中,M为A1C1的中点,若$\overrightarrow{AB}=\vec a$,$\overrightarrow{BC}=\vec b$,$\overrightarrow{A{A_1}}=\vec c$,则$\overrightarrow{BM}$可表示为(  )
A.$-\frac{1}{2}\vec a+\frac{1}{2}\vec b+\vec c$B.$\frac{1}{2}\vec a+\frac{1}{2}\vec b+\vec c$C.$-\frac{1}{2}\vec a-\frac{1}{2}\vec b+\vec c$D.$\frac{1}{2}\vec a-\frac{1}{2}\vec b+\vec c$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=x3+3x2-9x-3
(Ⅰ)若函数f(x)在点(x0,f(x0))处的切线l与直线x-9y+1=0垂直,求切线l的方程;
(Ⅱ)求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知α,β,γ是三个不同的平面,l1,l2是两条不同的直线,下列命题是真命题的是(  )
A.若α⊥γ,β⊥γ,则α∥βB.若l1∥α,l1⊥β,则α∥β
C.若α∥β,l1∥α,l2∥β,则l1∥l2D.若α⊥β,l1⊥α,l2⊥β,则l1⊥l2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图是两个腰长均为10cm的等腰直角三角形拼成的一个四边形ABCD,现将四边形ABCD沿BD折成直二面角A-BD-C,则三棱锥A-BCD的外接球的体积为500$\sqrt{3}$cm3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在直角坐标系xoy中,已知点P(0,$\sqrt{3}$),曲线C的参数方程为$\left\{\begin{array}{l}{x=\sqrt{2}cosφ}\\{y=2sinφ}\end{array}\right.$(φ为参数).以原点为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρ=$\frac{\sqrt{3}}{2cos(θ-\frac{π}{6})}$.
(Ⅰ)判断点P与直线l的位置关系并说明理由;
(Ⅱ)设直线l与曲线C的两个交点分别为A,B,求$\frac{1}{|PA|}$+$\frac{1}{|PB|}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.我国古代数学著作《九章算术》有如下问题:“今有金杖,长五尺,斩本一尺,重四斤.斩末一尺,重二斤.问次一尺各重几何?”其大意是:“现有一根长五尺的金杖,一头粗,一头细.在粗的一端截下1尺重4斤.在细的一端截下1尺,重2斤.问依次每一尺各重多少斤?”根据上面的已知条件,若金杖由粗到细是均匀变化的,则金杖的质量为(  )
A.12斤B.15斤C.15.5斤D.18斤

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设Sn为等比数列{an}的前n项和,a3=8a6,则$\frac{S_4}{S_2}$的值为(  )
A.$\frac{1}{2}$B.2C.$\frac{5}{4}$D.5

查看答案和解析>>

同步练习册答案