精英家教网 > 高中数学 > 题目详情
19.设ω>0,函数y=2cos(ωx+$\frac{π}{5}$)-1的图象向右平移$\frac{5π}{4}$个单位后与原图象重合,则ω的最小值是(  )
A.$\frac{8}{5}$B.$\frac{6}{5}$C.$\frac{4}{5}$D.$\frac{2}{5}$

分析 利用诱导公式,函数y=Asin(ωx+φ)的图象变换规律,求得ω的最小值.

解答 解:∵ω>0,函数y=2cos(ωx+$\frac{π}{5}$)-1的图象向右平移$\frac{5π}{4}$个单位后,
可得y=2cos(ωx-$\frac{5ω}{4}$π+$\frac{π}{5}$)-1的图象,
再根据所得图象与原图象重合,
可得-$\frac{5ω}{4}$π=2kπ,k∈Z,即ω=-$\frac{8}{5}$k,
则ω的最小值为$\frac{8}{5}$,
故选:A.

点评 本题主要考查诱导公式,函数y=Asin(ωx+φ)的图象变换规律,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.如图所示,单位位圆上的两个向量$\overrightarrow{a},\overrightarrow{b}$相互垂直,若向量$\overrightarrow{c}$满足($\overrightarrow{c}-\overrightarrow{a}$)•($\overrightarrow{c}-\overrightarrow{b}$)=0,则|$\overrightarrow{c}$|的取值范围是(  )
A.[0,1]B.[0,$\sqrt{2}$]C.[1,$\sqrt{2}$]D.[1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F且斜率为1的直线与渐近线有且只有一个交点,则双曲线的离心率为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若向量$\overrightarrow{a}$=(2,-1),$\overrightarrow{b}$=(3-x,2),$\overrightarrow{c}$=(4,x)满足(6$\overrightarrow{a}$-$\overrightarrow{b}$)•$\overrightarrow{c}$=8,则x等于(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在高中学习过程中,同学们经常这样说:“数学物理不分家,如果物理成绩好,那么学习数学就没什么问题.”某班针对“高中生物理学习对数学学习的影响”进行研究,得到了苏俄生的物理成绩与数学成绩具有线性相关关系的结论.现从该班随机抽取5名学生在一次考试中的数学和物理成绩,如表:
成绩   编号12345
物理(x)9085746863
数学(y)1301251109590
(1)求数学成绩y对物理成绩x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$($\widehat{b}$精确到0.1).若某位学生的物理成绩为80分,预测他的数学成绩;
(2)要从抽取的这五位学生中随机选出2位参加一项知识竞赛,求选中的学生的数学成绩至少有一位高于120分的概率.(参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$)
(参考数据:902+852+742+682+632=29394,90××125+74×110+68×95+63×90=42595)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知数列{an}满足:对于?m,n∈N*,都有an•am=an+m,且${a_1}=\frac{1}{2}$,那么a5=(  )
A.$\frac{1}{32}$B.$\frac{1}{16}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,三棱柱ABC-A1B1C1中,∠ACB=90°,CC1⊥底面ABC,AC=BC=CC1=2,D,E,F分别是棱AB,BC,B1C1的中点,G是棱BB1上的动点.
(1)当$\frac{BG}{{B{B_1}}}$为何值时,平面CDG⊥平面A1DE?
(2)求平面AB1F与平面AD1E所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知点P是长轴长为$2\sqrt{2}$的椭圆Q:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$上异于顶点的一个动点,O为坐标原点,A为椭圆的右顶点,点M为线段PA的中点,且直线PA与OM的斜率之积恒为$-\frac{1}{2}$.
(1)求椭圆Q的方程;
(2)设过左焦点F1且不与坐标轴垂直的直线l交椭圆于C,D两点,线段CD的垂直平分线与x轴交于点G,点G横坐标的取值范围是$[-\frac{1}{4},0)$,求|CD|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.某优秀学习小组有6名同学,坐成三排两列,现从中随机抽2人代表本小组展示小组合作学习成果,则所抽的2人来自同一排的概率是$\frac{1}{5}$.

查看答案和解析>>

同步练习册答案