【题目】已知
,函数
.
(1)若函数
在
上为减函数,求实数
的取值范围;
(2)令
,已知函数
,若对任意
,总存在
,使得
成立,求实数
的取值范围.
【答案】(1)
;(2)![]()
【解析】试题分析:(1)由题函数
上为减函数,可以转化为f'(x)<0在(1,+∞)上恒成立,由此求解参数范围即可;
(2)(2)由题
.
,可求出
的值域为
.
若对任意
,总存在
.使得
成立,则,
函数
在
的值域是
在
的值域的子集.,由此可得到实数
的取值范围.
试题解析:(1)因为
,
要使
在
为减函数,则需
在
上恒成立.
即
在
上恒成立,因为
在
为增函数,所以
在
的最小值为
,所以
.
(2)因为
,所以
.
,
当
时,
在
上为递增,
当
时,
在
上为递减,
所以
的最大值为
,所以
的值域为
.
若对任意
,总存在
.使得
成立,则,
函数
在
的值域是
在
的值域的子集.
对于函数
,
①当
时,
的最大值为
,所以
在
上的值域为
,由
得
;
②当
时,
的最大值为
,所以
在
上的值域为
,由
得
(舍).
综上所述,
的取值范围是
.
科目:高中数学 来源: 题型:
【题目】为了保护环境,某单位采用新工艺,把二氧化硅转化为一种可利用的化工产品.已知该单位每月都有处理量,且处理量最多不超过
吨,月处理成本
(元)与月处理量
(吨)之间的函数关系可近似的表示为:
,且每处理一吨二氧化硅得到可利用的化工产品价值为
元.
(1)设该单位每月获利为
(元),试将
表示月处理
(吨)的函数;
(2)若要保证该单位每月不亏损,则每月处理量应控制在什么范围?
(3)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在上海自贸区的利好刺激下,
公司开拓国际市场,基本形成了市场规模;自2014年1月以来的第
个月(2014年1月为第一个月)产品的内销量、出口量和销售总量(销售总量=内销量+出口量)分别为
、
和
(单位:万件),依据销售统计数据发现形成如下营销趋势:
,
(其中
,
为常数,
),已知
万件,
万件,
万件.
(1)求
,
的值,并写出
与
满足的关系式;
(2)证明:
逐月递增且控制在2万件内;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某省高考改革方案指出:该省高考考生总成绩将由语文数学英语3门统一高考成绩和学生从思想政治、历史、地理、物理、化学、生物6门等级性考试科目中自主选择3个,按获得该次考试有效成绩的考生(缺考考生或未得分的考生除外)总人数的相应比例的基础上划分等级,位次由高到低分为A、B、C、D、E五等级,该省的某市为了解本市
万名学生的某次选考历史成绩水平,从中随机抽取了
名学生选考历史的原始成绩,将所得成绩整理后,绘制出如图所示的频率分布直方图.
![]()
(Ⅰ)估算
名学生成绩的平均值和中位数(同一组中的
数据用该组区间的中点值作代表);
(Ⅱ)若抽取的
分以上的只有
名男生,现从抽样的
分以上学生中随机抽取
人,求抽取到
名女生的概率?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校办工厂请了30名木工制作200把椅子和100张课桌.已知制作一张课桌与制作一把椅子的工时数之比为10:7,问30名工人如何分组(一组制作课桌,另一组制作椅子)能使任务完成最快?请利用二分法的知识解答.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
、
与平面
、
,下列命题:
①若
平行
内的一条直线,则
;②若
垂直
内的两条直线,则
;③若
,
,且
,
,则
;④若
,
,且
,则
;⑤若
,
且
,则
;⑥若
,
,
,则
.
其中正确的命题为______(填写所有正确命题的编号).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一个风雨交加的夜里,某水库闸房(设为A)到某指挥部(设为B)的电话线路有一处发生了故障.这是一条
长的线路,想要尽快地查出故障所在.如果沿着线路一小段小段地查找,困难很多,每查一小段需要很长时间.
(1)维修线路的工人师傅随身带着话机,他应怎样工作,才能每查一次,就把待查的线路长度缩减一半?
(2)要把故障可能发生的范围缩小到
,最多要查多少次?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆
的右焦点为
,右顶点为
,已知
,其中
为原点,
为椭圆的离心率.
(1)求椭圆的方程;
(2)设过点
的直线
与椭圆交于点
(
不在
轴上),垂直于
的直线与
交于点
,与
轴交于点
,若
,且
,求直线的
斜率的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com