精英家教网 > 高中数学 > 题目详情
9.如图,直线y=x-2与圆x2+y2-4x+3=0及抛物线y2=8x依次交于A、B、C、D四点,则|AB|+|CD|=14.

分析 由已知圆的方程为(x-2)2+y2=1,抛物线y2=8x的焦点为(2,0),直线y=x-2过(2,0)点,则|AB|+|CD|=|AD|-2,直线y=x-2与y2=8x联立可得x2-12x+4=0,由此能够推导出|AB|+|CD|=16-2=14.

解答 解:由已知圆的方程为(x-2)2+y2=1,抛物线y2=8x的焦点为(2,0),直线y=x-2过(2,0)点,
则|AB|+|CD|=|AD|-2,
直线y=x-2与y2=8x联立可得x2-12x+4=0,
设A(x1,y1),D(x2,y2),则x1+x2=12,
则有|AD|=(x1+x2)+4=16,
故|AB|+|CD|=16-2=14,
故答案为:14.

点评 本题考查圆锥曲线和直线的综合运用,等价转化是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.设x>0,y>0且x+2y=1,f(x,y)=$\frac{1}{x}$+$\frac{1}{y}$+$\sqrt{\frac{1}{{x}^{2}}+\frac{1}{{y}^{2}}}$的最小值为10.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知m∈R,n∈R,并且m+3n=1,则mem+3ne3n的最小值$\sqrt{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知P是抛物线C:y=x2上一点,则点P到直线y=x-3的最短距离为$\frac{11\sqrt{2}}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知抛物线x2=4$\sqrt{3}$y的准线过双曲线$\frac{{x}^{2}}{{m}^{2}}$-y2=-1的焦点,则双曲线的离心率为(  )
A.$\frac{3\sqrt{2}}{4}$B.$\frac{3\sqrt{10}}{4}$C.$\sqrt{3}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图所示,点A,B分别是椭圆$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{20}$=1长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆上,且位于x轴上方,PA⊥PF,设M是椭圆长轴AB上的一点,M到直线AP的距离等于|MB|.
(1)求点P的坐标;
(2)求点M的坐标;
(3)求椭圆上的点到点M的距离d的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,角A,B,C所对的边分别为a,b,c,且8sin2($\frac{A+B}{2}$)+3cos2C=3.
(1)求cosC;
(2)若B=$\frac{π}{2}$,2$\overrightarrow{AM}$=$\overrightarrow{MC}$,求tan∠ABM.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.一个蜂巢里有1只蜜蜂,第1天,它飞出去找回了3个伙伴;第2天,4只蜜蜂飞出去,各自找回了3个伙伴如果这个找伙伴的过程继续下去,第6天所有的蜜蜂都归巢后,蜂巢中蜜蜂的总只数为(  )
A.243B.729C.1024D.4096

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设复数z1,z2在复平面内的对应点关于虚轴对称,若z1=1-2i,则$\frac{{z}_{2}}{{z}_{1}}$的虚部为-$\frac{4}{5}$.

查看答案和解析>>

同步练习册答案