精英家教网 > 高中数学 > 题目详情
20.已知F1、F2分别是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的左、右焦点,P为双曲线右支上的任意一点且$\frac{|P{F}_{1}{|}^{2}}{|P{F}_{2}|}$=8a,则双曲线离心率的取值范围是(  )
A.(1,3]B.[3,+∞)C.(1,2]D.[2,+∞)

分析 设|PF1|=m,|PF2|=n,根据双曲线定义可知|PF1|-|PF2|=2a,|PF1|2=8a|PF2|,得到n=2a,m=4a,同时利用三角形中两边之和大于第三边的性质,推断出2c≤6a,进而求得a和c的不等式关系,分析当p为双曲线顶点时,$\frac{c}{a}$=3且双曲线离心率e>1,综上即可求得双曲线离心率的取值范围.

解答 解:设|PF1|=m,|PF2|=n,
根据双曲线定义可知|PF1|-|PF2|=2a,|PF1|2=8a|PF2|,
∴m-n=2a,m2=8an,
∴$\frac{m-n}{{m}^{2}}$=$\frac{2a}{8an}$,
∴m2-4mn+4n2=0,
∴m=2n,
∴n=2a,m=4a,
在△PF1F2中,|F1F2|<|PF1|+|PF2|,
∴2c<4a+2a,
∴$\frac{c}{a}$<3,
当p为双曲线顶点时,$\frac{c}{a}$=3
又∵双曲线e>1,
∴1<e≤3,
故选A.

点评 本题主要考查了双曲线的简单性质,三角形边与边之间的关系,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.由于渤海海域水污染严重,为了获得第一手的水文资料,潜水员需要潜入水深为60米的水底进行作业,根据经验,潜水员下潜的平均速度为v(米/单位时间),每单位时间消耗氧气${(\frac{v}{10})^3}+1$(升),在水底作业10个单位时间,每单位时间消耗氧气0.9(升),返回水面的平均速度为$\frac{v}{2}$(米/单位时间),每单位时间消耗氧气1.5(升),记该潜水员完成此次任务的消耗氧气总量为y(升).
(1)求y关于v的函数关系式;
(2)若c≤v≤15(c>0),求当下潜速度v取什么值时,消耗氧气的总量最少.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若复数z满足z•(1+i)2=|1+i|2,则z=-i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.△ABC的内角A,B,C的对边分别为a,b,c,其中b≠c,
且bcosB=ccosC,延长线段BC到点D,使得BC=4CD=4,∠CAD=30°,
(Ⅰ)求证:∠BAC是直角;
(Ⅱ)求tan∠D的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知点A是直角三角形ABC的直角顶点,且A(2a,2),B(-4,a),C(2a+2,2),则△ABC的外接圆的方程是(  )
A.x2+(y-3)2=5B.x2+(y+3)2=5C.(x-3)2+y2=5D.(x+3)2+y2=5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知正三棱锥P-ABC,点P,A,B,C都在半径为3的球面上,若PA,PB,PC两两互相垂直,则球心到截面ABC的距离为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在数{an}中,a1=1,且满足an+1=3an
(1)证明数列{an}为等比数列,并求出an
(2)数列{bn}满足bn=log3an,求证{bn}为等差数列并求出{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=2cos22x-2,给出下列命题:
①?β∈R,f(x+β)为奇函数;
②?α∈(0,$\frac{3π}{4}$),f(x)=f(x+2α)对x∈R恒成立;
③?x1,x2∈R,若|f(x1)-f(x2)|=2,则|x1-x2|的最小值为$\frac{π}{4}$;
④?x1,x2∈R,若f(x1)=f(x2)=0,则x1-x2=kπ(k∈Z).其中的真命题有(  )
A.①②B.③④C.②③D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知抛物线C1:y2=2px(p>0)的焦点为椭圆C2:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1({a>b>0})的右焦点,且两曲线有公共点($\frac{2}{3}$,$\frac{{2\sqrt{6}}}{3}}$)
(1)求抛物线C1与椭圆C2的方程;
(2)若椭圆C2的一条切线l与抛物线C1交于A,B两点,且OA⊥OB,求直线l的方程.

查看答案和解析>>

同步练习册答案