精英家教网 > 高中数学 > 题目详情
10.由于渤海海域水污染严重,为了获得第一手的水文资料,潜水员需要潜入水深为60米的水底进行作业,根据经验,潜水员下潜的平均速度为v(米/单位时间),每单位时间消耗氧气${(\frac{v}{10})^3}+1$(升),在水底作业10个单位时间,每单位时间消耗氧气0.9(升),返回水面的平均速度为$\frac{v}{2}$(米/单位时间),每单位时间消耗氧气1.5(升),记该潜水员完成此次任务的消耗氧气总量为y(升).
(1)求y关于v的函数关系式;
(2)若c≤v≤15(c>0),求当下潜速度v取什么值时,消耗氧气的总量最少.

分析 (1)分别计算潜入水底用时用氧量,水底作业时用氧量和返回水面用时用氧量,即可得到总用氧量的函数y;
(2)求导数y′,判断函数y的单调性,讨论c的取值,求出下潜速度v取什么值时消耗氧气的总量最少.

解答 解:(1)由题意,下潜用时$\frac{60}{v}$单位时间,
用氧量为[${(\frac{v}{10})}^{3}$+1]×$\frac{60}{v}$=$\frac{{3v}^{2}}{50}$+$\frac{60}{v}$(升),
水底作业时的用氧量为10×0.9=9(升),
返回水面用时$\frac{60}{\frac{v}{2}}$=$\frac{120}{v}$单位时间,
用氧量为$\frac{120}{v}$×1.5=$\frac{180}{v}$(升),
∴总用氧量为y=$\frac{{3v}^{2}}{50}$+$\frac{240}{v}$+9(v>0);
(2)求导数y′=$\frac{6v}{50}$-$\frac{240}{{v}^{2}}$=$\frac{3{(v}^{3}-2000)}{2{5v}^{2}}$,
令y'=0,解得v=10$\root{3}{2}$,
在0<v<10$\root{3}{2}$时,y'<0,函数y单调递减,
在v>10$\root{3}{2}$时,y'>0,函数y单调递增;
∴当c<10$\root{3}{2}$时,函数y在(0,10$\root{3}{2}$)上递减,在(10,$\root{3}{2}$15)上递增,
此时v=10$\root{3}{2}$时用氧量最少;
当c≥10$\root{3}{2}$时,函数y在[c,15]上递增,
此时v=c时,总用氧量最少.

点评 本题考查了函数模型的构建以及基本不等式的运用问题,也考查了利用导数判断函数单调性问题,是综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知命题p,?x∈R都有2x<3x,命题q:?x0∈R,使得${x_0}^3=1-{x_0}^2$,则下列复合命题正确的是(  )
A.p∧qB.¬p∧qC.p∧¬qD.(¬p)∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知$\frac{a+i}{i}$=1+bi,其中a,b是实数,i是虚数单位,则a+b=(  )
A.0B.1C.2D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知复数z满足i•z=3-4i(其中i为虚数单位),则|z|=5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦点分别为F1,F2,过F1且与x轴垂直的直线交椭圆于A、B两点,直线AF2与椭圆的另一个交点为C,若$\overrightarrow{A{F_2}}+2\overrightarrow{C{F_2}}$=0,则椭圆的离心率为$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.底面是正方形的四棱锥中P-ABCD中,侧面PAD⊥底面ABCD,且△PAD是等腰直角三角形,其中PA=PD,E,F分别为线段PC,DB的中点,问在线段AB上是否存在点G,使得二面角C-PD-G的余弦值为$\frac{{\sqrt{3}}}{3}$,若存在,请求出点G的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.“更相减损术”是出自《九章算术》的一种求最大公约数的算法,如框图中若输入的a、b分别为198、90,则输出的i为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若复数z=$\frac{3-i}{i}$的共轭复数为$\overline{z}$,则$\overline{z}$在复平面内的对应点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知F1、F2分别是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的左、右焦点,P为双曲线右支上的任意一点且$\frac{|P{F}_{1}{|}^{2}}{|P{F}_{2}|}$=8a,则双曲线离心率的取值范围是(  )
A.(1,3]B.[3,+∞)C.(1,2]D.[2,+∞)

查看答案和解析>>

同步练习册答案