17£®ÔÚÊýÁÐ{an}ÖУ¬a1=$\frac{1}{2}$£¬ÆäǰnÏîºÍΪSn£¬ÇÒSn=an+1-$\frac{1}{2}$£¨n¡ÊN*£©£®
£¨¢ñ£©Çóan£¬Sn£»
£¨¢ò£©Éèbn=log2£¨2Sn+1£©-2£¬ÊýÁÐ{cn}Âú×ãcn•bn+3•bn+4=1+n£¨n+1£©£¨n+2£©•2bn£¬ÊýÁÐ{cn}µÄǰnÏîºÍΪTn£¬Çóʹ4Tn£¾2n+1-$\frac{1}{504}$³ÉÁ¢µÄ×îСÕýÕûÊýnµÄÖµ£®

·ÖÎö £¨¢ñ£©ÓÉSn=an+1-$\frac{1}{2}$£¬µÃ${S}_{n-1}={a}_{n}-\frac{1}{2}£¨n¡Ý2£©$£¬Á½Ê½×÷²îºó¿ÉµÃÊýÁÐ{an}ÊÇÊ×ÏîΪ$\frac{1}{2}$£¬¹«±ÈΪ2 µÄµÈ±ÈÊýÁУ¬ÓɵȱÈÊýÁеÄͨÏʽµÃ${a}_{n}=\frac{1}{2}•{2}^{n-1}={2}^{n-2}$£¬´úÈëSn=an+1-$\frac{1}{2}$ÇóµÃSn£»
£¨¢ò£©°ÑSn´úÈëbn=log2£¨2Sn+1£©-2£¬½áºÏcn•bn+3•bn+4=1+n£¨n+1£©£¨n+2£©•2bnÇóµÃcn£¬È»ºóÀûÓÃÁÑÏîÏàÏû·¨¼°µÈ±ÈÊýÁеÄǰnÏîºÍµÃ´ð°¸£®

½â´ð ½â£º£¨¢ñ£©ÓÉSn=an+1-$\frac{1}{2}$£¬µÃ${S}_{n-1}={a}_{n}-\frac{1}{2}£¨n¡Ý2£©$£¬
Á½Ê½×÷²îµÃ£ºan=an+1-an£¬¼´2an=an+1£¨n¡Ý2£©£¬
¡à$\frac{{a}_{n+1}}{{a}_{n}}=2£¨n¡Ý2£©$£¬
ÓÖ${a}_{1}={S}_{1}={a}_{2}-\frac{1}{2}$£¬µÃa2=1£¬
¡à$\frac{{a}_{2}}{{a}_{1}}=2$£¬
¡àÊýÁÐ{an}ÊÇÊ×ÏîΪ$\frac{1}{2}$£¬¹«±ÈΪ2µÄµÈ±ÈÊýÁУ¬
Ôò${a}_{n}=\frac{1}{2}•{2}^{n-1}={2}^{n-2}$£¬
${S}_{n}={a}_{n+1}-\frac{1}{2}={2}^{n-1}-\frac{1}{2}$£»
£¨¢ò£©bn=log2£¨2Sn+1£©-2=$lo{g}_{2}{2}^{n}-2=n-2$£¬
¡àcn•bn+3•bn+4=1+n£¨n+1£©£¨n+2£©•2bn£¬
¼´${c}_{n}£¨n+1£©£¨n+2£©=1+£¨n+1£©£¨n+2£©•{2}^{n-2}$£¬
${c}_{n}=\frac{1}{£¨n+1£©£¨n+2£©}+{2}^{n-2}=\frac{1}{n+1}-\frac{1}{n+2}+{2}^{n-2}$£¬
${T}_{n}=£¨\frac{1}{2}-\frac{1}{3}£©+£¨\frac{1}{3}-\frac{1}{4}£©+¡­+£¨\frac{1}{n+1}-\frac{1}{n+2}£©$+£¨2-1+20+¡­+2n-2£©
=$\frac{1}{2}-\frac{1}{n+2}+\frac{\frac{1}{2}£¨1-{2}^{n}£©}{1-2}$=$\frac{1}{2}-\frac{1}{n+2}-\frac{1}{2}+{2}^{n-1}$=${2}^{n-1}-\frac{1}{n+2}$£®
ÓÉ4Tn£¾2n+1-$\frac{1}{504}$£¬µÃ
$4£¨{2}^{n-1}-\frac{1}{n+2}£©£¾{2}^{n+1}-\frac{1}{504}$£¬
¼´$\frac{4}{n+2}£¼\frac{1}{504}$£¬n£¾2014£®
¡àʹ4Tn£¾2n+1-$\frac{1}{504}$³ÉÁ¢µÄ×îСÕýÕûÊýnµÄֵΪ2015£®

µãÆÀ ±¾Ì⿼²éÁËÊýÁеÝÍÆÊ½£¬¿¼²éÁ˵ȱȹØÏµµÄÈ·¶¨£¬ÑµÁ·ÁËÊýÁеķÖ×éÇóºÍ¡¢ÁÑÏîÏàÏû·¨ÇóÊýÁеĺͼ°µÈ±ÈÊýÁеÄǰnÏîºÍ£¬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªº¯Êýf£¨x£©=$\frac{ln£¨x+a£©}{lnx}$£®
£¨¢ñ£©µ±a=1ʱ£¬Çóf£¨x£©µÄµ¥µ÷Çø¼ä£¬²¢±È½Ïlog23£¬log34Óëlog45µÄ´óС£»
£¨¢ò£©ÈôʵÊýaÂú×ã|a|¡Ý1ʱ£¬ÌÖÂÛf£¨x£©¼«ÖµµãµÄ¸öÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÊýÁÐ{an}Âú×ãlg2an=lg4${\;}^{\sqrt{{a}_{n-1}}}$+1£¬a1=1
£¨1£©Çó{an}ͨÏʽ£®
£¨2£©Çó1+5+9+13+¡­+£¨8n-7£©=£¨4n-3£©£¨2n-1£©£®£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®ÊýÁÐ1£¬$\frac{1}{2}$£¬$\frac{1}{4}$£¬¡­$\frac{1}{{2}^{n-1}}$£¬¡­µÄǰ100ÏîµÄºÍΪ2-2-99£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÑÖªÖ±Ïßy=kx+bÓëÔ²O£ºx2+y2=1ÏཻÓÚA£¬BÁ½µã£¬µ±b=$\sqrt{1+{k}^{2}}$ʱ£¬$\overrightarrow{OA}$•$\overrightarrow{OB}$=£¨¡¡¡¡£©
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÇÒÂú×ãa1=1£¬nSn+1-£¨n+1£©Sn=$\frac{n£¨n+1£©}{2}$£¬n¡ÊN*
£¨1£©Çóa2µÄÖµ£»
£¨2£©ÇóÊýÁÐ{an}µÄͨÏʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÇúÏßy=x3-3x2+1£¬ÔÚµãP´¦µÄÇÐÏ߯½ÐÐÓÚy=9x-1£¬ÇóÇÐÏß·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®Èô³ÌÐò¿òͼÈçͼËùʾ£¬Ôò³ÌÐòÔËÐкóÊä³ökµÄÖµÊÇ6£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑ֪ȫ¼¯U={0£¬1£¬2£¬3£¬4}£¬¼¯ºÏA={1£¬2£¬3}£¬B={0£¬2£¬4}£¬Ôò£¨∁UA£©¡ÉBΪ£¨¡¡¡¡£©
A£®{0£¬4}B£®{2£¬3£¬4}C£®{0£¬2£¬4}D£®{0£¬2£¬3£¬4}

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸