精英家教网 > 高中数学 > 题目详情
已知集合M是满足下列性质的函数f(x)的全体:在定义域D内存在x0,使得f(x0+1)=f(x0)+1成立.
(1)函数f(x)=x2是否属于集合M?说明理由;
(2)函数f(x)=
1
x
是否属于集合M?说明理由;
(3)若对于任意实数a,函数f(x)=
b
x+a
均属于集合M,试求实数b的取值范围.
分析:(1)若f(x)=x2属于集合M,则方程(x+1)2=x2+1有根,解二次方程如果该方程有根,则数f(x)=x2属于集合M.
(2)若f(x)=
1
x
属于集合M,则方程
1
x+1
=
1
x
+1有根,解二次方程如果该方程有非零根,则数f(x)=
1
x
属于集合M.
(3)若b=0时,f(x)=0(x≠-a)显然不属于集合M.若当b≠0时,D=(-∞,-a)∪(-a,+∞),由对于任意实数a,函数f(x)=
b
x+a
均属于集合M,故
b
x0+a+1
=
b
x 0+a
+1
一定有解,根据△≥0,我们构造出一个关于b的不等式,解不等式即可得到实数b的取值范围.
解答:解:(1)D=R,若f(x)=x2属于集合M,
则存在实数x0,使得(x0+1)2=x02+1,解得x0=0,因为此方程有实数解,
所以函数f(x)=x2属于集合M.(5分)
(2)D=(-∞,0)∪(0,+∞),
若f(x)=
1
x
∈M,则存在非零实数x0,使得
1
x0+1
=
1
x0
+1
,即x02+x0+1=0,
因为此方程无实数解,所以函数f(x)=
1
x
∉M.(5分)
(3)当b≠0时,D=(-∞,-a)∪(-a,+∞),
f(x)=
b
x+a
,存在实数x0,使得
b
x0+a+1
=
b
x 0+a
+1

即x02+(2a+1)x0+a2+a+b=0(x0≠-a,-a-1)对于任意实数a均有解,
所以△≥0恒成立,解得b≤
1
4
,有b∈(-∞,0)∪(0,
1
4
]
,(15分)
当b=0时,f(x)=0(x≠-a)显然不属于集合M.
所以,实数b的取值范围是(-∞,0)∪(0,
1
4
]
.(18分)
点评:本题考查的知识点是元素与集合的关系的判断,要想判断一个元素x是否属于集合M,仅需要判断x是否满足M的性质即可.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合M是满足下列性质的函数f(x)的全体:在定义域内存在x0,使得f(x0+1)=f(x0)+f(1)成立.
(1)函数f(x)=
1
x
是否属于集合M?说明理由;
(2)设函数f(x)=lg
a
x2+1
∈M
,求a的取值范围;
(3)设函数y=2x图象与函数y=-x的图象有交点,证明:函数f(x)=2x+x2∈M.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M是满足下列性质的函数f(x)的全体:存在非零常数T,对任意x∈R,有f(x+T)=T•f(x)成立.
(1)函数f(x)=x是否属于集合M?说明理由;
(2)设函数f(x)=ax(a>0,且a≠1)的图象与y=x的图象有公共点,证明:f(x)=ax∈M;
(3)若函数f(x)=sinkx∈M,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M是满足下列性质的函数f(x)的全体:存在非零常数k,对定义域中的任意x,等式f(kx)=
k2
+f(x)恒成立.
(1)判断一次函数f(x)=ax+b(a≠0)是否属于集合M;
(2)证明函数f(x)=log2x属于集合M,并找出一个常数k;
(3)已知函数f(x)=logax( a>1)与y=x的图象有公共点,证明f(x)=logax∈M.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M是满足下列条件的函数f(x)的全体;
①当x∈[0,+∞)时,函数值为非负实数;
②对于任意的s、t∈x[0,+∞),λ>0,都有
f(x)+λf(t)
1+λ
≤f(
s+λt
1+λ
)

在三个函数f1(x)=x-1,f2(x)=2x-1f3(x)=ln
x+1
中,属于集合M的是
f3(x)
f3(x)
(写出您认为正确的所有函数.)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•嘉定区三模)已知集合M是满足下列两个条件的函数f(x)的全体:①f(x)在定义域上是单调函数;②在f(x)的定义域内存在闭区间[a,b],使f(x)在[a,b]上的值域为[
a
2
 , 
b
2
]
.若函数g(x)=
x-1
+m
,g(x)∈M,则实数m的取值范围是
(0 , 
1
2
]
(0 , 
1
2
]

查看答案和解析>>

同步练习册答案