精英家教网 > 高中数学 > 题目详情
已知函数f(x)=1+x-
x2
2
+
x3
3
-
x4
4
+…-
x2012
2012
+
x2013
2013
,g(x)=1-x+
x2
2
-
x3
3
+
x4
4
-…+
x2012
2012
-
x2013
2013
,若函数f(x)有唯一零点x1,函数g(x)有唯一零点x2,设函数F(x)=f(x+3)•g(x-4)的零点均在区间[a,b],(a<b,a,b∈Z),则b-a的最小值是(  )
分析:用零点存在性定理,得f(x)在R上有唯一零点x1∈(-1,0),g(x)在R上有唯一零点x2∈(1,2),结合函数图象的平移知识可得F(x)的零点所在的区间,由此不难得到b-a的最小值.
解答:解:∵f(x)=1+x-
x2
2
+
x3
3
-
x4
4
+…-
x2012
2012
+
x2013
2013

∴f(0)=1>0,f(-1)=-
1
2
-
1
3
-…-
1
2013
<0,
∵函数f(x)有唯一零点x1
∴根据根的存在性定理可知x1∈(-1,0).
∵g(x)=1-x+
x2
2
-
x3
3
+…+
x2012
2012
-
x2013
2013

∴g(1)=
1
2
-
1
3
+
1
4
-…+
1
2012
-
1
2013
>0,
g(2)=1-2+
22
2
-
33
3
+…+
22012
2012
-
22013
2013
<0

∵函数g(x)有唯一零点x2
∴根据根的存在性定理可知x2∈(1,2).
由F(x)=f(x+3)g(x-4)=0,
则f(x+3)=0或g(x-4)=0.
由x+3∈(-1,0).得-1<x+3<0,
即-4<x<-3,
∴函数f(x+3)的零点在(-4,-3).
由x-4∈(1,2).,
得1<x-4<2,即5<x<6,
∴函数g(x-4)的零点在(5,6).
即函数F(x)=f(x+3)•g(x-4)的零点在(-4,-3)和(5,6)内,
∵F(x)的零点均在区间[a,b],(a<b,a,b∈Z),
∴b≥6,a≤-4,
∴b-a≥10,
即b-a的最小值是10.
故选:C.
点评:本题给出关于x的多项式函数,求函数零点所在的区间长度的最小值.着重考查了函数的零点.综合性较强,难度较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
|x|
,g(x)=1+
x+|x|
2
,若f(x)>g(x),则实数x的取值范围是(  )
A、(-∞,-1)∪(0,1)
B、(-∞,-1)∪(0,
-1+
5
2
)
C、(-1,0)∪(
-1+
5
2
,+∞)
D、(-1,0)∪(0,
-1+
5
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1,x∈Q
0,x∉Q
,则f[f(π)]=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1-x
ax
+lnx(a>0)

(1)若函数f(x)在[1,+∞)上为增函数,求实数a的取值范围;
(2)当a=1时,求f(x)在[
1
2
,2
]上的最大值和最小值;
(3)当a=1时,求证对任意大于1的正整数n,lnn>
1
2
+
1
3
+
1
4
+
+
1
n
恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1+cos2x-2sin2(x-
π
6
),其中x∈R,则下列结论中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1+logax(a>0,a≠1),满足f(9)=3,则f-1(log92)的值是(  )

查看答案和解析>>

同步练习册答案