精英家教网 > 高中数学 > 题目详情
6.复数z满足z($\overline{z}$+1)=1+i,其中i是虚数单位,则z=(  )
A.1+i或-2+iB.i或1+iC.i或-1+iD.-1-i或-2+i

分析 通过设z=a+bi(a,b∈R),利用z($\overline{z}$+1)=1+i,计算即得结论.

解答 解:设z=a+bi(a,b∈R),
∵z($\overline{z}$+1)=1+i,
∴a2+b2+a+bi=1+i,
∴b=1,a2+a+1=1,
∴a=0或a=-1,
故选:C.

点评 本题考查复数的运算,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.在△ABC,内角A,B,C所对的边长分别为a,b,c,2asinBcosC+2csinBcosA=$\sqrt{2}$b且a>b,则∠B=45°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{1}{2}a{x^2}$-bx,g(x)=lnx-f(x).
(Ⅰ)若f(2)=2,讨论函数g(x)的单调性;
(Ⅱ)若f(x)是关于x的一次函数,且函数g(x)有两个不同的零点x1,x2,求实数b的取值范围;
(Ⅲ)在(Ⅱ)的条件下,求证:x1x2>e2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知m,n是两条不同的直线,α、β是两个不同的平面,则下列命题中正确的是(  )
A.若α⊥β,m∥α,则m⊥βB.若m∥α,n∥m,则n∥α
C.若m∥α,n∥β,且m∥n,则α∥βD.若m⊥β,m∥α,则α⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在集合{(x,y)|0≤x≤4,0≤y≤4}内任取1个元素,能使式子x+y-6≥0的概率为$\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知不等式x2-ax+a-2>0(a>2)的解集为(-∞,x1)∪(x2,+∞),则x1+x2+$\frac{1}{{x}_{1}{x}_{2}}$的最小值为(  )
A.$\frac{1}{2}$B.2C.$\frac{5}{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知F1(-c,0),F2(c,0)为椭圆$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个焦点,若椭圆上存在点P满足$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=2c2,则此椭圆离心率的取值范围是(  )
A.[$\frac{1}{2}$,$\frac{\sqrt{3}}{3}$]B.(0,$\frac{\sqrt{2}}{2}$]C.[$\frac{\sqrt{3}}{3}$,1)D.[$\frac{\sqrt{2}}{3}$,$\frac{\sqrt{3}}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知g(x)=bx2+cx+1,f(x)=x2+ax-lnx+1,g(x)在x=1处的切线为y=2x
(Ⅰ)求b,c的值;
(Ⅱ)若a=-1,求f(x)的极值;
(Ⅲ)设h(x)=f(x)-g(x),是否存在实数a,当x∈(0,e],(e≈2.718,为自然常数)时,函数h(x)的最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知{an}为等差数列,Sn为其前n项和,若a3=-6,S1=S3,则公差d=-12; Sn的最大值为24.

查看答案和解析>>

同步练习册答案