分析 根据正弦定理化简已知的式子,再由内角和定理和诱导公式求出sinB的值,根据条件和特殊角的正弦值求出角B.
解答 解:由题意知,2asinBcosC+2csinBcosA=$\sqrt{2}$b,
根据正弦定理得:sinAsinBcosC+sinCsinBcosA=$\frac{\sqrt{2}}{2}$sinB,
∵sinAcosC+cosAsinC=sin(A+C)
∴sinBsin(A+C)=$\frac{\sqrt{2}}{2}$sinB,
又sinB≠0,则sin(A+C)=sin(180°-B)=sinB=$\frac{\sqrt{2}}{2}$,
又a>b,所以A>B,则B=45°,
故答案为:45°.
点评 本题考查了正弦定理,内角和定理,以及诱导公式的应用,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4\sqrt{6}}{3}$ | B. | 2$\sqrt{6}$ | C. | $\frac{4\sqrt{7}}{3}$ | D. | 4$\sqrt{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 月份 | 第一季度 | 第二季度 | 第三季度 | 第四季度 | ||||||||
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
| 产量 | 500 | 400 | 625 | 625 | 500 | 500 | 500 | 500 | 500 | 400 | 400 | 625 |
| 零件市场价格 | 8 | 10 |
| 概率 | 0.4 | 0.6 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1+i或-2+i | B. | i或1+i | C. | i或-1+i | D. | -1-i或-2+i |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com