分析 (1)由an=Sn-Sn-1(n≥2)求得an,验证n=1成立后得数列{an}的通项公式;
(2)把数列{an}的通项公式代入bn=$\frac{{a}_{n}+2}{{3}^{n+1}}$,然后利用错位相减法求数列{bn}的前n项和Tn.
解答 解:(1)∵3n2-n=2Sn,①
∴当n≥2时,3(n-1)2-(n-1)=2Sn-1 ,②
①-②得6n-4=2an,
∴an=3n-2,
∵n=1时,得3×12-1=2a1,∴a1=1,符合上式.
∴数列{an}的通项公式为an=3n-2;
(2)∵${b}_{n}=\frac{{a}_{n}+2}{{3}^{n+1}}=\frac{3n}{{3}^{n+1}}=\frac{n}{{3}^{n}}$
∴${T}_{n}=\frac{1}{3}+\frac{2}{{3}^{2}}+\frac{3}{{3}^{3}}+…+\frac{n}{{3}^{n}}$,③
∴$3{T}_{n}=1+\frac{2}{3}+\frac{3}{{3}^{2}}+…+\frac{n}{{3}^{n-1}}$,④
④-③得$2{T}_{n}=1+\frac{1}{3}+\frac{1}{{3}^{2}}+…+\frac{1}{{3}^{n-1}}-\frac{n}{{3}^{n}}$
=$\frac{1×[1-(\frac{1}{3})^{n}]}{1-\frac{1}{3}}-\frac{n}{{3}^{n}}=\frac{2[1-(\frac{1}{3})^{n}]}{3}-\frac{n}{{3}^{n}}$.
∴${T}_{n}=\frac{1}{3}-\frac{1}{{3}^{n+1}}-\frac{n}{2•{3}^{n}}$.
点评 本题考查由数列的前n项和求数列的通项公式,训练了错位相减法求数列的和,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | 2 | C. | $\frac{5}{2}$ | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com