精英家教网 > 高中数学 > 题目详情
11.在锐角△ABC中,交A、B、C所对的边分别为a,b,c,且$\frac{a}{sinA}=\frac{2c}{\sqrt{3}}$.
(Ⅰ)求角C的大小;
(Ⅱ)若c=$\sqrt{7}$,且△ABC的面积为$\frac{3\sqrt{3}}{2}$,求a+b的值.

分析 (Ⅰ)根据正弦定理化简已知的式子求出sinC,再由锐角三角形的特征求出角C的大小;
(Ⅱ)根据余弦定理和条件可得7=a2+b2-ab,利用三角形的面积公式和条件求出ab和a2+b2的值,由完全平方公式即可求出a+b的值.

解答 解:(Ⅰ)由题意知,$\frac{a}{sinA}=\frac{2c}{\sqrt{3}}$,
根据正弦定理得,$\frac{a}{sinA}=\frac{c}{sinC}=\frac{2c}{\sqrt{3}}$,则sinC=$\frac{\sqrt{3}}{2}$,
∵△ABC是锐角三角形,∴C=$\frac{π}{3}$;
(Ⅱ)由余弦定理得,c2=a2+b2-2abcosC,
则7=a2+b2-ab,即ab=a2+b2-7,①
∵△ABC的面积为$\frac{3\sqrt{3}}{2}$,∴$\frac{3\sqrt{3}}{2}$=$\frac{1}{2}$absinC=$\frac{\sqrt{3}}{4}$ab,
解得ab=6,代入①可得a2+b2=13,
∴(a+b)2=a2+b2+2ab=25,则a+b=5.

点评 本题考查了正弦、余弦定理,三角形的面积公式,以及整体代换的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.如图所示,分别以A,B,C为圆心,在△ABC内作半径为2的扇形(图中的阴影部分),在△ABC内任取一点P,如果点P落在阴影内的概率为$\frac{1}{3}$,那么△ABC的面积是6π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两条渐近线都与圆(x-c)2+y2=ac(c=$\sqrt{{a}^{2}+{b}^{2}}$相切,则双曲线的离心率为(  )
A.$\frac{\sqrt{5}-1}{2}$B.$\frac{\sqrt{5}}{2}$C.2D.$\frac{1+\sqrt{5}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设m>1,在线性约束条件$\left\{\begin{array}{l}{y≥x}\\{y≤mx}\\{x+y≤1}\end{array}\right.$下,目标函数z=x+5y的最大值为4,则m的值为3.此时,约束条件下的平面区域的面积为$\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{4\sqrt{6}}{3}$B.2$\sqrt{6}$C.$\frac{4\sqrt{7}}{3}$D.4$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设i是虚数单位,若复数$z=\frac{{{a^2}+ai}}{1-i}>0$,则a的值为(  )
A.0或-1B.0或1C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,已知三棱锥O-ABC的三条侧棱OA,OB,OC两两垂直,且OA=OC=4,OB=3.
(1)求O点到平面ABC的距离;
(2)设A1、B1、C1依次为线段OA,OB,OC内的点,证明:△A1B1C1是锐角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,在边长为1的正三角形ABC中,E,F分别为边AB,AC上的动点,且满足$\overrightarrow{AE}$=m$\overrightarrow{AB}$,$\overrightarrow{AF}$=n$\overrightarrow{AC}$,其中m,n∈(0,1),m+n=1,M,N分别是EF,BC的中点,则|$\overrightarrow{MN}$|的最小值为(  )
A.$\frac{\sqrt{2}}{4}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{3}}{4}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设数列{an}的前n项和为Sn,且Sn满足3n2-n=2Sn,n∈N*
(1)求数列{an}的通项公式;
(2)设bn=$\frac{{a}_{n}+2}{{3}^{n+1}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案