精英家教网 > 高中数学 > 题目详情
2.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两条渐近线都与圆(x-c)2+y2=ac(c=$\sqrt{{a}^{2}+{b}^{2}}$相切,则双曲线的离心率为(  )
A.$\frac{\sqrt{5}-1}{2}$B.$\frac{\sqrt{5}}{2}$C.2D.$\frac{1+\sqrt{5}}{2}$

分析 双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1( a>0,b>0)的渐近线与(x-c)2+y2=ac相切,可得圆心(c,0)到渐近线的距离d=r,利用点到直线的距离公式即可得出.

解答 解:取双曲线的渐近线y=$\frac{b}{a}$x,即bx-ay=0.
∵双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1( a>0,b>0)的渐近线与(x-c)2+y2=ac相切,
∴圆心(c,0)到渐近线的距离d=r,
∴$\frac{bc}{\sqrt{{a}^{2}+{b}^{2}}}$=$\sqrt{ac}$,化为b2=ac,
两边平方得ac=c2-a2,化为e2-e-1=0.
∵e>1,
∴e=$\frac{1+\sqrt{5}}{2}$.
故选D.

点评 本题考查了双曲线的渐近线及其离心率、点到直线的距离公式、直线与圆相切的性质扥个基础知识与基本技能方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.设f(x)=$\left\{\begin{array}{l}{x,x<a}\\{{x}^{2},x≥a}\end{array}\right.$对任意实数b,关于x的方程f(x)-b=0总有实数根,则a的取值范围是[0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知向量$\overrightarrow{a}$=(3cosα,1),$\overrightarrow{b}$=(-2,3sinα),且$\overrightarrow{a}⊥\overrightarrow{b}$,其中$α∈(0,\frac{π}{2})$.
(Ⅰ)求sinα和cosα的值;
(Ⅱ)若5sin(α-β)=3$\sqrt{5}$cosβ,β∈(0,π),求β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,已知AD是△ABC的对角∠EAC的平分线,交BC的延长线于点D,延长DA交△ABC的外接圆于点F,连结FB,FC.
(1)求证:FB=FC;
(2)若FA=2,AD=6,求FB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知复数z=$\frac{2}{-1+i}$,则下列判断正确的是(  )
A.z的实部为1B.|z|=$\sqrt{2}$
C.z的虚部为-iD.z的共轭复数为1+i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知9a=3,lgx=a 则x=$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设an=$\frac{1}{n}$sin$\frac{nπ}{20}$,sn=a1+a2+…+an,在S1,S2,…,S80中,正数的个数是(  )
A.20B.40C.60D.80

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在锐角△ABC中,交A、B、C所对的边分别为a,b,c,且$\frac{a}{sinA}=\frac{2c}{\sqrt{3}}$.
(Ⅰ)求角C的大小;
(Ⅱ)若c=$\sqrt{7}$,且△ABC的面积为$\frac{3\sqrt{3}}{2}$,求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.计算27${\;}^{\frac{2}{3}}$+lg5-lg$\frac{1}{2}$=10.

查看答案和解析>>

同步练习册答案