精英家教网 > 高中数学 > 题目详情
1.如图所示,分别以A,B,C为圆心,在△ABC内作半径为2的扇形(图中的阴影部分),在△ABC内任取一点P,如果点P落在阴影内的概率为$\frac{1}{3}$,那么△ABC的面积是6π.

分析 由题意知本题是一个几何概型,先试验发生包含的所有事件是三角形的面积S,然后求出阴影部分的面积,代入几何概率的计算公式即可求解.

解答 解:由题意知本题是一个几何概型,
∵试验发生包含的所有事件是直角三角形的面积S,
阴影部分的面积S1=$\frac{1}{2}$π22=2π.
点P落在区域M内的概率为P=$\frac{2π}{S}$=$\frac{1}{3}$.
故S=6π,
故答案为:6π.

点评 本题考查几何概型,且把几何概型同几何图形的面积结合起来,几何概型和古典概型是高中必修中学习的,高考时常以选择和填空出现,有时文科会考这种类型的解答.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=ax+m(a>0,或a≠1)的图象经过点A(1,0),B(2,-$\frac{1}{4}$).
(1)求a、m的值;
(2)若函数y=f(x)在区间[-2,b](b>-2)上的最大值是最小值的7倍,求b的值;
(3)若不等式ln[(4-t)f(x)+$\frac{1}{2}$t]>0对任意实数t∈[-1,1]恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设f(x)=$\left\{\begin{array}{l}{x,x<a}\\{{x}^{2},x≥a}\end{array}\right.$对任意实数b,关于x的方程f(x)-b=0总有实数根,则a的取值范围是[0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.若点(1,-2)与点(-2,0)在直线x+y+a=0的两侧,同时点(1,-2)和点(-1,-4)都在不等式bx+y+2<0所表示的区域内,求a+b与a-b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图所示,某三棱锥的正视图、俯视图均为边长为2的正三角形,则其左视图面积为(  )
A.2B.$\sqrt{3}$C.$\frac{3}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)的右焦点为F($\sqrt{3}$,0),上下两个顶点与点F恰好是正三角形的三个顶点.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)过原点O的直线l与椭圆交于A,B两点,如果△FAB为直角三角形,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知向量$\overrightarrow{a}$=(3cosα,1),$\overrightarrow{b}$=(-2,3sinα),且$\overrightarrow{a}⊥\overrightarrow{b}$,其中$α∈(0,\frac{π}{2})$.
(Ⅰ)求sinα和cosα的值;
(Ⅱ)若5sin(α-β)=3$\sqrt{5}$cosβ,β∈(0,π),求β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,已知AD是△ABC的对角∠EAC的平分线,交BC的延长线于点D,延长DA交△ABC的外接圆于点F,连结FB,FC.
(1)求证:FB=FC;
(2)若FA=2,AD=6,求FB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在锐角△ABC中,交A、B、C所对的边分别为a,b,c,且$\frac{a}{sinA}=\frac{2c}{\sqrt{3}}$.
(Ⅰ)求角C的大小;
(Ⅱ)若c=$\sqrt{7}$,且△ABC的面积为$\frac{3\sqrt{3}}{2}$,求a+b的值.

查看答案和解析>>

同步练习册答案