分析 (1)设因天灾人祸发生事故的事件为A,因列车故障发生事故的事件为B,由韦达定理得:P(A)+P(B)=$\frac{33}{1{0}^{3}}$,P(A)P(B)=$\frac{9}{1{0}^{5}}$,由此能求出一列车从A到B开行中,不发生事故的概率.
(2)由(1)得一年(每月按30天算)内因上述两类原因不发生事故的列车数X~B(1800,0.97),由此能求出一年(每月按30天算)内因上述两类原因不发生事故的列车数的数学期望.
解答 解:(1)∵在A、B两地开通高铁路线,根据数十年铁路数据统计:
因天灾人祸、列车故障发生事故的概率分别为方程x2-$\frac{33}{{10}^{3}}$x+$\frac{9}{{10}^{5}}$=0的两实根,
设因天灾人祸发生事故的事件为A,因列车故障发生事故的事件为B,
∴由韦达定理得:P(A)+P(B)=$\frac{33}{1{0}^{3}}$,P(A)P(B)=$\frac{9}{1{0}^{5}}$,
∴一列车从A到B开行中,不发生事故的概率:
p=1-P(A)-P(B)+P(A)P(B)=1-$\frac{33}{1{0}^{3}}+\frac{9}{1{0}^{5}}$≈0.97.
(2)由(1)得一年(每月按30天算)内因上述两类原因不发生事故的列车数X~B(1800,0.97),
∴一年(每月按30天算)内因上述两类原因不发生事故的列车数的数学期望EX=1746.
点评 本题考查概率的求法,考查离散型随机变量的分布列的求法,是中档题,解题时要认真审题,注意二项分布的性质的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若ξ服从正态分布N(0,2),且P(ξ>2)=0.4,则P(0<ξ<2)=0.2 | |
| B. | x=1是x2-x=0的必要不充分条件 | |
| C. | 直线ax+y+2=0与ax-y+4=0垂直的充要条件为a=±1 | |
| D. | “若xy=0,则x=0或y=0”的逆否命题为“若x≠0或y≠0,则xy≠0” |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 5 | C. | $\frac{24}{5}$ | D. | $\frac{28}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com