精英家教网 > 高中数学 > 题目详情

【题目】某班主任对全班50名学生学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示:


积极参加班级工作

不太主动参加班级工作

合计

学习积极性高

18

7

25

学习积极性一般

6

19

25

合计

24

26

50

(1)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?

(2)试运用独立性检验的思想方法点拨:学生的学习积极性与对待班级工作的态度是否有关系?并说明理由.(参考下表)

P(K2≥k)

050

040

025

015

010

005

0025

0010

0005

0001

k

0455

0708

1323

2072

2706

3841

5024

6635

7879

10828

【答案】(1)(2) 有的把握说学习积极性与对待班级工作的态度有关系,理由见试题解析.

【解析】试题分析:(1)通过表格,找出有关频数,用频数比去求概率;(2)运用独立性检验的思想,求,与临界值比较得出结论.

试题解析:(1)积极参加班级工作的学生有24,总人数为50,概率为

不太主动参加班级工作且学习积极性一般的学生有19,概率为.

,

∵K26.635,

99%的把握说学习积极性与对待班级工作的态度有关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知 =(1,2), =(﹣3,2), 当k=时,(1)k + ﹣3 垂直;
当k=时,(2)k + ﹣3 平行.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知z是复数,z+2i, 均为实数(i为虚数单位),且复数(z+ai)2在复平面上对应的点在第一象限,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,某小区为美化环境,准备在小区内草坪的一侧修建一条直路,另一侧修建一条休闲大道,它的前一段是函数 的一部分,后一段是函数 ),时的图象,图象的最高点为 ,垂足为.

(1)求函数的解析式;

(2)若在草坪内修建如图所示的儿童游乐园PMFE,问点落在曲线上何处时,儿童乐园的面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

某市为增强市民的环境保护意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.

(1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?

(2)在(1)的条件下,该县决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,若不等式f(﹣2m2+2m﹣1)+f(8m+ek)>0(e是自然对数的底数),对任意的m∈[﹣2,4]恒成立,则整数k的最小值是(
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

某企业有甲、乙两个研发小组.为了比较他们的研发水平,现随机抽取这两个小组往年研发新产品的结果如下:(a,b),(a,),(a,b),(,b),(),(a,b),(a,b),(a,),(,b),(a,),(),(a,b),(a,),(,b),(a,b).其中a,分别表示甲组研发成功和失败;b,分别表示乙组研发成功和失败.

(I)若某组成功研发一种新产品,则给该组记1分,否则记0分.试计算甲、乙两组研发新产品的成绩的平均数和方差,并比较甲、乙两组的研发水平;

(II)若该企业安排甲、乙两组各自研发一种新产品,试估计恰有一组研发成功的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某校5个学生的数学和物理成绩如表

学生的编号i

1

2

3

4

5

数学xi

80

75

70

65

60

物理yi

70

66

68

64

62

(Ⅰ)假设在对这5名学生成绩进行统计时,把这5名学生的物理成绩搞乱了,数学成绩没出现问题,问:恰有2名学生的物理成绩是自己的实际分数的概率是多少?
(Ⅱ)通过大量事实证明发现,一个学生的数学成绩和物理成绩具有很强的线性相关关系的,在上述表格是正确的前提下,用x表示数学成绩,用y表示物理成绩,求y与x的回归方程;
参考公式: =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= x3﹣2ax2+3a2x+b(a>0).
(1)当y=f(x)的极小值为1时,求b的值;
(2)若f(x)在区间[1,2]上是减函数,求a的范围.

查看答案和解析>>

同步练习册答案