分析 利用余弦定理表示出cosA,将已知等式代入求出cosA的值,根据A为三角形内角,可求sinA的值,再利用正弦定理即可求出外接圆半径,利用圆的面积公式即可计算得解.
解答 解:∵b2+c2-a2=$\sqrt{3}$bc,且a=1,
∴cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{\sqrt{3}bc}{2bc}$=$\frac{\sqrt{3}}{2}$,
∵A为三角形内角,
∴sinA=$\frac{1}{2}$,
∴设三角形ABC外接圆半径为R,根据正弦定理得:$\frac{a}{sinA}$=$\frac{1}{\frac{1}{2}}$=2R=2,即R=1,
∴三角形ABC外接圆面积S=πR2=π.
故答案为:π.
点评 此题考查了正弦、余弦定理,以及圆的面积公式的应用,熟练掌握定理及公式是解本题的关键,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|-2≤x<1} | B. | {x|-3≤x<2} | C. | {x|-2≤x<2} | D. | {x|-3≤x≤2} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 时间 | (0,2) | [2,4) | [4,6) | [6,8) | 8小时以上 |
| 男生人数 | 10 | 25 | 35 | 30 | x |
| 女生人数 | 15 | 30 | 25 | y | 5 |
| 男生 | 女生 | 总计 | |
| 平均时间不超过6小时 | |||
| 平均时间超过6小时 | |||
| 总计 |
| K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$ | P(K2≥k) | 0.10 | 0.05 | 0.010 | 0.005 |
| k | 2.706 | 3.841 | 6.635 | 7.789 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{12}$ | B. | $\frac{1}{6}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com