精英家教网 > 高中数学 > 题目详情
20.三角形ABC中,角A,B,C所对边分别为a,b,c,已知b2+c2-a2=$\sqrt{3}$bc,且a=1,则三角形ABC外接圆面积为π.

分析 利用余弦定理表示出cosA,将已知等式代入求出cosA的值,根据A为三角形内角,可求sinA的值,再利用正弦定理即可求出外接圆半径,利用圆的面积公式即可计算得解.

解答 解:∵b2+c2-a2=$\sqrt{3}$bc,且a=1,
∴cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{\sqrt{3}bc}{2bc}$=$\frac{\sqrt{3}}{2}$,
∵A为三角形内角,
∴sinA=$\frac{1}{2}$,
∴设三角形ABC外接圆半径为R,根据正弦定理得:$\frac{a}{sinA}$=$\frac{1}{\frac{1}{2}}$=2R=2,即R=1,
∴三角形ABC外接圆面积S=πR2=π.
故答案为:π.

点评 此题考查了正弦、余弦定理,以及圆的面积公式的应用,熟练掌握定理及公式是解本题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.设集合M={y|y=2sinx,x∈[-5,5]},N={x|y=log2(x-1)},则M∩N=(1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知数列{an}为等差数列,a4+a9=24,a6=11,则a7=13.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知sin($\frac{π}{3}$+$\frac{α}{6}$)=-$\frac{3}{5}$,cos($\frac{π}{12}$-$\frac{β}{2}$)=-$\frac{12}{13}$,-5π<α<-2π,-$\frac{11π}{6}$<β<$\frac{π}{6}$,求sin($\frac{α}{6}$+$\frac{β}{2}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知sin($\frac{π}{3}$+$\frac{α}{6}$)=-$\frac{3}{5}$,cos($\frac{π}{6}$+$\frac{β}{2}$)=-$\frac{12}{13}$,-5π<α<-2π,-$\frac{π}{3}$<β<$\frac{5π}{3}$,求sin($\frac{α}{6}$+$\frac{β}{2}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.根据如图,当输入x为2017时,输出的y为(  )
A.$\frac{4}{3}$B.10C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知全集U=R,集合A={x|x2>4},B={x|$\frac{x+3}{x-1}$≤0},则(∁UA)∩B等于(  )
A.{x|-2≤x<1}B.{x|-3≤x<2}C.{x|-2≤x<2}D.{x|-3≤x≤2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某校高二年级共有2000人,其中男生1100人,女生900人,为调查该年级学生每周平均体育运动时间的情况,采用分成抽样的方法抽取200人进行分析,统计的数据如表(时间单位:小时).
男、女运动时间情况的调查表:
 时间 (0,2)[2,4)[4,6)[6,8) 8小时以上
 男生人数 10 25 35 30 x
 女生人数 15 30 25 y 5
(Ⅰ)计算x,y的值,根据以上统计数据完成下面的每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该级部学生的每周平均体育运动时间与性别有关”.
  男生 女生 总计
 平均时间不超过6小时   
 
 平均时间超过6小时
   
 总计   
附:
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$ P(K2≥k) 0.10  0.05 0.0100.005 
 k  2.7063.841 6.635 7.789
(Ⅱ)在每周平均体育运动时间在8小时以上的被调查的人中,喜欢乒乓球的有6人,其中男生4人,女生2人;级部决定从这4名男省中选2人,2名女生中选1人,组成代表队参加校运动会,则男生A和女生E恰好都被选中的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.春节期间和谐小区从初一至初八连续8天举办大型文艺汇演,居民甲随机选择其中的连续3天观看演出,那么他在初一至初四期间连续3天看演出的概率为(  )
A.$\frac{1}{12}$B.$\frac{1}{6}$C.$\frac{1}{4}$D.$\frac{1}{3}$

查看答案和解析>>

同步练习册答案