精英家教网 > 高中数学 > 题目详情
15.已知sin($\frac{π}{3}$+$\frac{α}{6}$)=-$\frac{3}{5}$,cos($\frac{π}{6}$+$\frac{β}{2}$)=-$\frac{12}{13}$,-5π<α<-2π,-$\frac{π}{3}$<β<$\frac{5π}{3}$,求sin($\frac{α}{6}$+$\frac{β}{2}$)的值.

分析 根据同角的三角函数的关系和诱导公式以及两角和的余弦公式计算即可

解答 解:∵-5π<α<-2π,
∴-$\frac{5π}{6}$<$\frac{α}{6}$<-$\frac{π}{3}$,
∴-$\frac{π}{2}$<$\frac{π}{3}$+$\frac{α}{6}$<0
∴cos($\frac{π}{3}$+$\frac{α}{6}$)>0,
∴cos($\frac{π}{3}$+$\frac{α}{6}$)=$\frac{4}{5}$
∵-$\frac{π}{3}$<β<$\frac{5π}{3}$,-$\frac{π}{6}$<$\frac{β}{2}$<$\frac{5π}{6}$,
∴0<$\frac{π}{6}$+$\frac{β}{2}$<π,
∴sin($\frac{π}{6}$+$\frac{β}{2}$)>0
∴sin ($\frac{π}{6}$+$\frac{β}{2}$)=$\frac{5}{13}$
∵$\frac{α}{6}$+$\frac{β}{2}$=($\frac{π}{3}$+$\frac{α}{6}$)+($\frac{π}{6}$+$\frac{β}{2}$)-$\frac{π}{2}$
∴sin($\frac{α}{6}$+$\frac{β}{2}$)=sin[($\frac{π}{3}$+$\frac{α}{6}$)+($\frac{π}{6}$+$\frac{β}{2}$)-$\frac{π}{2}$]=-cos[($\frac{π}{3}$+$\frac{α}{6}$)+($\frac{π}{6}$+$\frac{β}{2}$)],
=-cos($\frac{π}{3}$+$\frac{α}{6}$)cos($\frac{π}{6}$+$\frac{β}{2}$)+sin($\frac{π}{3}$+$\frac{α}{6}$)sin($\frac{π}{6}$+$\frac{β}{2}$)=-$\frac{4}{5}$×(-$\frac{12}{13}$)-$\frac{3}{5}$×$\frac{5}{13}$=$\frac{33}{65}$
即sin($\frac{α}{6}$+$\frac{β}{2}$)=$\frac{33}{65}$.

点评 本题考查了同角的三角函数的关系和诱导公式以及两角和的余弦公式,考查了学生的运算能力,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.若函数y=x2-2mx+1在(-∞,1)上是单调递减函数,则实数m的取值范围[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知直线l:x-y-1=0,则直线的斜率为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设向量$\overrightarrow a=({2,λ}),\overrightarrow b=({λ-1,1})$,若$\overrightarrow a∥\overrightarrow b$,则λ=-1或2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数y=f(x),若存在实数m、k(m≠0),使得对于定义域内的任意实数x,均有m•f(x)=f(x+k)+f(x-k)成立,则称函数y=f(x)为“可平衡”函数,有序数对(m,k)称为函数f(x)的“平衡”数对;
(1)若m=$\sqrt{3}$,判断f(x)=sinx是否为“可平衡”函数,并说明理由;
(2)若m1,m2∈R且(m1,$\frac{π}{2}$),(m2,$\frac{π}{4}$)均为f(x)=sin2x的“可平衡”数对,当0<x<$\frac{π}{3}$时,方程m1+m2=a有两个不相等的实根,求a 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.三角形ABC中,角A,B,C所对边分别为a,b,c,已知b2+c2-a2=$\sqrt{3}$bc,且a=1,则三角形ABC外接圆面积为π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若随机变量X服从正态分布N(1,4),设P(0<X<3)=m,P(-1<X<2)=n,则m、n的大小关系为(  )
A.m>nB.m<nC.m=nD.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.角α终边过点(-1,$\sqrt{2}$),则tanα=-$\sqrt{2}$,cos2α=-$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.执行如图所示的流程图,输出的S值为(  )
A.$\frac{2}{3}$B.$\frac{13}{21}$C.$\frac{13}{7}$D.$\frac{305}{357}$

查看答案和解析>>

同步练习册答案