分析 ①提取公因式、配方可得:x4-4x3+x2+4x+1=x2$({x}^{2}-4x+1+\frac{4}{x}+\frac{1}{{x}^{2}})$=x2$({x}^{2}+\frac{1}{{x}^{2}}-4(x-\frac{1}{x})+1)$=${x}^{2}[(x-\frac{1}{x})^{2}-4(x-\frac{1}{x})+3]$,在因式分解即可得出.
②a2(b+c)+b2(a+c)+c2(a+b)+2abc展开分组可得:(a2b+b2a)+(c2a+bc2)+(a2c+b2c+2abc)=ab(a+b)+c2(a+b)+c(a+b)2,再提取公因式即可得出.
解答 解:①x4-4x3+x2+4x+1
=x2$({x}^{2}-4x+1+\frac{4}{x}+\frac{1}{{x}^{2}})$
=x2$({x}^{2}+\frac{1}{{x}^{2}}-4(x-\frac{1}{x})+1)$
=${x}^{2}[(x-\frac{1}{x})^{2}-4(x-\frac{1}{x})+3]$
=x2$(x-\frac{1}{x}-1)$$(x-\frac{1}{x}-3)$
=(x2-x-1)(x2-3x-1).
②a2(b+c)+b2(a+c)+c2(a+b)+2abc
=a2b+a2c+b2a+b2c+c2a+bc2+2abc
=(a2b+b2a)+(c2a+bc2)+(a2c+b2c+2abc)
=ab(a+b)+c2(a+b)+c(a+b)2
=(a+b)(ab+c2+ac+bc)
=(a+b)(b+c)(a+c).
点评 本题考查了因式分解方法、乘法公式、配方法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | a∈(0,1),k∈(-$\frac{1}{2}$,$\frac{1}{2}$) | B. | a∈(0,1],k∈(-$\frac{1}{2}$,$\frac{1}{2}$) | ||
| C. | a∈(0,1),k∈(-$\frac{1}{2}$,0)∪(0,$\frac{1}{2}$) | D. | a∈(0,1),k∈(-$\frac{1}{2}$,$\frac{1}{2}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 函数y=f(x)在区间[-2,-1]上单调递减,在区间[-1,0]上单调递增 | |
| B. | 函数y=f(x)在区间[-2,-1]上单调递增,在区间[-1,0]上单调递减 | |
| C. | 函数y=f(x)在区间[-2,0]上的最小值是f(-1) | |
| D. | 以上三个结论都不正确 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 8x-y-20=0 | B. | 8x-y+12=0 | C. | 8x-y-24=0 | D. | 8x-y-12=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{24}{5}$ | B. | $\frac{28}{5}$ | C. | 6 | D. | 5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com