精英家教网 > 高中数学 > 题目详情
17.分解因式:
①x4-4x3+x2+4x+1;
②a2(b+c)+b2(a+c)+c2(a+b)+2abc.

分析 ①提取公因式、配方可得:x4-4x3+x2+4x+1=x2$({x}^{2}-4x+1+\frac{4}{x}+\frac{1}{{x}^{2}})$=x2$({x}^{2}+\frac{1}{{x}^{2}}-4(x-\frac{1}{x})+1)$=${x}^{2}[(x-\frac{1}{x})^{2}-4(x-\frac{1}{x})+3]$,在因式分解即可得出.
②a2(b+c)+b2(a+c)+c2(a+b)+2abc展开分组可得:(a2b+b2a)+(c2a+bc2)+(a2c+b2c+2abc)=ab(a+b)+c2(a+b)+c(a+b)2,再提取公因式即可得出.

解答 解:①x4-4x3+x2+4x+1
=x2$({x}^{2}-4x+1+\frac{4}{x}+\frac{1}{{x}^{2}})$
=x2$({x}^{2}+\frac{1}{{x}^{2}}-4(x-\frac{1}{x})+1)$
=${x}^{2}[(x-\frac{1}{x})^{2}-4(x-\frac{1}{x})+3]$
=x2$(x-\frac{1}{x}-1)$$(x-\frac{1}{x}-3)$
=(x2-x-1)(x2-3x-1).
②a2(b+c)+b2(a+c)+c2(a+b)+2abc
=a2b+a2c+b2a+b2c+c2a+bc2+2abc
=(a2b+b2a)+(c2a+bc2)+(a2c+b2c+2abc)
=ab(a+b)+c2(a+b)+c(a+b)2
=(a+b)(ab+c2+ac+bc)
=(a+b)(b+c)(a+c).

点评 本题考查了因式分解方法、乘法公式、配方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.直线y=kx-1与椭圆$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{a}=1$相切,则k,a的取值范围分别是(  )
A.a∈(0,1),k∈(-$\frac{1}{2}$,$\frac{1}{2}$)B.a∈(0,1],k∈(-$\frac{1}{2}$,$\frac{1}{2}$)
C.a∈(0,1),k∈(-$\frac{1}{2}$,0)∪(0,$\frac{1}{2}$)D.a∈(0,1),k∈(-$\frac{1}{2}$,$\frac{1}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求下列函数的值域.
(1)f(x)=$\frac{2}{x+1}$;
(2)f(x)=$\frac{2}{x+1}$(x<-2);
(3)f(x)=$\frac{x}{x+1}$;
(4)f(x)=$\frac{x}{x+1}$(x≥0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数y=f(x)满足:f(-2)>f(-1),f(-1)<f(0),则下列结论正确的是(  )
A.函数y=f(x)在区间[-2,-1]上单调递减,在区间[-1,0]上单调递增
B.函数y=f(x)在区间[-2,-1]上单调递增,在区间[-1,0]上单调递减
C.函数y=f(x)在区间[-2,0]上的最小值是f(-1)
D.以上三个结论都不正确

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知4f(x)-5f($\frac{1}{x}$)=2x,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.不等式($\frac{1}{2}$)${\;}^{{x}^{2}}$>($\frac{1}{2}$)2x-3的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.曲线y=x3-x2在M(x0,y0)(x>0)处切线的斜率为8,则此切线方程为.(  )
A.8x-y-20=0B.8x-y+12=0C.8x-y-24=0D.8x-y-12=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设全集为R,已知集合A={x|x>2或x<-1},B={x|-3≤x≤3}.
(1)求A∩B,A∪B,CRA;
(2)若C={x|4x+p<0},C⊆A,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若正数m,n满足m+3n=5mn,则3m+4n的最小值为(  )
A.$\frac{24}{5}$B.$\frac{28}{5}$C.6D.5

查看答案和解析>>

同步练习册答案