17£®ÎåÒ»ÀͶ¯½ÚÆÚ¼ä£¬¼ÇÕßͨ¹ýËæ»úѯÎÊij¾°Çø60ÃûÓοͶԾ°ÇøµÄ·þÎñÊÇ·ñÂúÒ⣬µÃµ½ÈçϵÄÁÐÁª±í£ºÐÔ±ðÓë¶Ô¾°ÇøµÄ·þÎñÊÇ·ñÂúÒ⣨µ¥Î»£ºÃû£©
ÄÐÅ®×ܼÆ
ÂúÒâ24
²»ÂúÒâ6
×ܼÆ60
ÒÑÖªÔÚ60ÈËÖÐËæ»ú³éÈ¡1ÈË£¬³éµ½ÄÐÐԵĸÅÂÊΪ$\frac{2}{5}$£®
£¨I£©Ç뽫ÉÏÃæµÄ2¡Á2ÁÐÁª±í²¹³äÍêÕû£¨Ö±½Óд½á¹û£©£¬²¢ÅжÏÊÇ·ñÓÐ75%µÄ°ÑÎÕÈÏΪ¡°ÓοÍÐÔ±ðÓë¶Ô¾°ÇøµÄ·þÎñÂúÒ⡱Óйأ¬ËµÃ÷ÀíÓÉ£»
£¨II£©´ÓÕâ60ÃûÓοÍÖа´¶Ô¾°ÇøµÄ·þÎñÊÇ·ñÂúÒâ²ÉÈ¡·Ö²ã³éÑù£¬³éȡһ¸öÈÝÁ¿Îª5µÄÑù±¾£¬´ÓÕâ5ÈËÖÐÈÎÑ¡3ÈË£¬ÇóËùÑ¡µÄ3ÈËÖÁÉÙÓÐÒ»ÃûÄÐÐԵĸÅÂÊ£®
¸½£º
P£¨K2¡Ýk0£©0.2500.150.100.050.01
k01.3232.0722.7063.8416.635
K2=$\frac{{n{{£¨{ad-bc}£©}^2}}}{{£¨{a+b}£©£¨{c+d}£©£¨{a+c}£©£¨{b+d}£©}}$£¨ÆäÖÐn=a+b+c+d£©

·ÖÎö £¨I£©ÓÉÌâÒâ¿ÉÖªÇóµÃÄÐÉúµÄÈËÊý£¬¼´¿ÉÇóµÃÅ®ÉúµÄ×ÜÈËÊý£¬½«2¡Á2ÁÐÁª±íÌîÍêÕû£¬¸ù¾ÝËù¸øµÄ¹«Ê½£¬´úÈëÊý¾ÝÇó³öÁÙ½çÖµ£¬°ÑÇóµÃµÄ½á¹ûͬÁÙ½çÖµ±í½øÐбȽϣ¬¼´¿ÉµÃµ½Ã»ÓÐ75%µÄ°ÑÎÕÈÏΪ¡°ÓοÍÐÔ±ðÓë¶Ô¾°ÇøµÄ·þÎñÂúÒ⡱Óйأ»
£¨II£©·Ö±ðÇóµÃ×ܵÄʼþºÍ¿ÉÄÜÁ˵ÄʼþµÄ¸öÊý£¬¸ù¾Ý¹Åµä¸ÅÐ͹«Ê½¼´¿ÉÇóµÃËùÑ¡µÄ3ÈËÖÁÉÙÓÐÒ»ÃûÄÐÐԵĸÅÂÊ£®

½â´ð ½â£º£¨I£©2¡Á2ÁÐÁª±í£º

ÄÐÅ®×ܼÆ
ÂúÒâ182442
²»ÂúÒâ61218
×ܼÆ243660
K2=$\frac{60¡Á£¨{18¡Á12-24¡Á6£©}^{2}}{42¡Á18¡Á24¡Á36}$=0.476£¼1.323£¬
¡àûÓÐ75%µÄ°ÑÎÕÈÏΪ¡°ÓοÍÐÔ±ðÓë¶Ô¾°ÇøµÄ·þÎñÂúÒ⡱Óйأ®
£¨II£©Õâ60ÃûÓοÍÖвÉÈ¡·Ö²ã³éÑùµÄ·½·¨³éȡһ¸öÈÝÁ¿Îª5µÄÑù±¾£¬ÆäÖÐÄÐÐÔ2ÈË£¬Å®ÐÔ3ÈË£¬ÄÐÐÔ¼ÇΪa1£¬a2£¬Å®ÐÔ¼ÇΪb1£¬b2£¬b3£¬
ÔòËùÓпÉÄܽá¹ûΪ£º£¨a1£¬a2£¬b1£©£»£¨a1£¬a2£¬b2£©£»£¨a1£¬a2£¬b3£©£»£¨a1£¬b1£¬b2£©£»£¨a1£¬b2£¬b3£©£»£¨a1£¬b1£¬b3£©£»£¨a2£¬b1£¬b2£©£»
£¨a2£¬b2£¬b3£©£»£¨a2£¬b1£¬b3£©£»£¨b1£¬b2£¬b3£©£¬¹²ÓÐ10ÖÖÇé¿ö£¬
¼Ç¡°ËùÑ¡µÄ3ÈËÖÁÉÙÓÐÒ»ÃûÄÐÐԵĸÅÂÊ¡±ÎªÊ¼þM£¬ÔòʼþM°üº¬µÄ»ù±¾Ê¼þ¹²ÓÐ9ÖÖÇé¿ö£¬
ÔòP£¨M£©=$\frac{9}{10}$£®

µãÆÀ ±¾Ì⿼²é¶ÀÁ¢ÐÔ¼ìÑéµÄÔËÓ㬿¼²é¸ÅÂʵļÆË㣬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÔÚÖ±½Ç×ø±êϵxOy£¬ÒÔOΪ¼«µã£¬xÖáµÄÕý°ëÖὨÁ¢Ö±½Ç×ø±êϵ£¬Ö±ÏßlµÄ¼«×ø±ê·½³Ì$¦Ñsin£¨¦È+\frac{¦Ð}{4}£©$=2$\sqrt{2}£¨m+1£©$£¬¶øÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\sqrt{2}cos¦Õ}\\{y=\sqrt{2}sin¦Õ}\end{array}\right.$£¨ÆäÖЦÕΪ²ÎÊý£©£»
£¨1£©ÈôÖ±ÏßlÓëÇúÏßCÇ¡ºÃÓÐÒ»¸ö¹«¹²µã£¬ÇóʵÊýmµÄÖµ£»
£¨2£©µ±m=-$\frac{3}{4}$£¬ÇóÖ±Ïßl±»ÇúÏßC½ØµÃµÄÏÒ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®Æ½ÃæÖ±½Ç×ø±êϵÖУ¬µãP¡¢QÊÇ·½³Ì$\sqrt{{x^2}+2\sqrt{7}x+{y^2}+7}+\sqrt{{x^2}-2\sqrt{7}x+{y^2}+7}$=8±íʾµÄÇúÏßCÉϲ»Í¬Á½µã£¬ÇÒÒÔPQΪֱ¾¶µÄÔ²¹ý×ø±êÔ­µãO£¬ÔòOµ½Ö±ÏßPQµÄ¾àÀëΪ£¨¡¡¡¡£©
A£®2B£®$\frac{6}{5}$C£®3D£®$\frac{12}{5}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖª¡÷ABCµÄÈý¸ö¶¥µã×ø±ê·Ö±ðΪA£¨-1£¬0£©£¬B£¨2£¬3£©£¬C£¨1£¬2$\sqrt{2}$£©£¬ÇÒ¶¨µãP£¨1£¬1£©£®
£¨1£©Çó¡÷ABCµÄÍâ½ÓÔ²µÄ±ê×¼·½³Ì£»
£¨2£©Èô¹ý¶¨µãPµÄÖ±ÏßÓë¡÷ABCµÄÍâ½ÓÔ²½»ÓÚE£¬FÁ½µã£¬ÇóÏÒEFÖеãµÄ¹ì¼£·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®±È½ÏÏÂÁи÷ÌâÖÐÁ½¸öÊýѧʽֵµÄ´óС
£¨1£©1.7a+1£¬1.7a£»£¨2£©0.9a-1£¬0.9a£»
£¨3£©log0.9£¨a2+1£©£¬log0.9a2£»£¨4£©log1.2a2£¬log1.2£¨a2-1£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÒÑÖª¼¯ºÏA£¬BΪÁ½¸ö·Ç¿ÕʵÊý¼¯£¬¶¨Ò弯ºÏA+B={x+y|x¡ÊA£¬y¡ÊB}£¬Èô¼¯ºÏA={0£¬2£¬5}£¬B={1£¬2£¬6}£¬Ôò¼¯ºÏA+BÖÐÔªËØµÄ¸öÊýÊÇ8£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÒÑÖªº¯Êýf£¨x£©=lg£¨x2+2x+a2£©µÄÖµÓòΪR£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ[-1£¬1]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®Èôa¡Ê{4£¬5£¬6}ÇÒa¡Ê{6£¬7}£¬ÔòaµÄֵΪ6£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-1-\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÒÔµãOΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖáµÄ¼«×ø±êϵÖУ¬Ô²×¶ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ2=$\frac{12}{3+si{n}^{2}¦È}$
£¨1£©ÇóÔ²×¶ÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌÓëÖ±ÏßlµÄÆÕͨ·½³Ì£»
£¨2£©ÈôÖ±Ïßl½»Ô²×¶ÇúÏßCÓÚM£¬NÁ½µã£¬Çó|MN|µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸