精英家教网 > 高中数学 > 题目详情
5.已知△ABC的三个顶点坐标分别为A(-1,0),B(2,3),C(1,2$\sqrt{2}$),且定点P(1,1).
(1)求△ABC的外接圆的标准方程;
(2)若过定点P的直线与△ABC的外接圆交于E,F两点,求弦EF中点的轨迹方程.

分析 (1)确定△ABC的外接圆圆心为(2,0),半径r=2+1=3,即可求出△ABC外接圆的标准方程;
(2)设弦EF的中点为M,坐标为(x,y),由垂径定理的推论知MN⊥MP,即$\overrightarrow{MN}•\overrightarrow{MP}=0$,由此求弦EF中点的轨迹方程.

解答 解:(1)由题意得AC的中点坐标为$(0,\sqrt{2})$,${k_{AC}}=\sqrt{2}$,
∴AC中垂线的斜率为$-\frac{{\sqrt{2}}}{2}$,直线AC的中垂线的方程为y-$\sqrt{2}$=-$\frac{\sqrt{2}}{2}$x,
AB的中点坐标为($\frac{1}{2}$,$\frac{3}{2}$),斜率为1,
∴直线AB的中垂线的方程为y-$\frac{3}{2}$=-(x-$\frac{1}{2}$),
由$\left\{\begin{array}{l}{y-\frac{3}{2}=-(x-\frac{1}{2})}\\{y-\sqrt{2}=-\frac{\sqrt{2}}{2}x}\end{array}\right.$得$\left\{\begin{array}{l}x=2\\ y=0\end{array}\right.$,
∴△ABC的外接圆圆心为(2,0),半径r=2+1=3,
故△ABC外接圆的标准方程为(x-2)2+y2=9
(2)设弦EF的中点为M,坐标为(x,y),△ABC外接圆的圆心N,则N(2,0)
由垂径定理的推论知MN⊥MP,即$\overrightarrow{MN}•\overrightarrow{MP}=0$,
∴(x-2,y)•(x-1,y-1)=0,
故弦EF中点的轨迹方程为${(x-\frac{3}{2})^2}+{(y-\frac{1}{2})^2}=\frac{1}{2}$(在已知圆内部).

点评 本题考查圆的方程,考查垂径定理的推论,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.在直角坐标系中,曲线C1:x2+y2=1经过伸缩变换$\left\{\begin{array}{l}{x′=\sqrt{3}x}\\{y′=\sqrt{2}y}\end{array}\right.$后得到曲线C2
(1)以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,求曲线C2的极坐标方程;
(2)设A,B是曲线C2上不同的两点,且OA⊥OB,求$\frac{1}{O{A}^{2}}$$+\frac{1}{O{B}^{2}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,直线PA为⊙O的切线,切点为A,PO交⊙O于E,F两点,直径BC⊥OP,连接AB交PO于点D.
(1)若PA=4,PE=2,求⊙O直径的长度.
(2)证明:PA=PD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知A(-2,1),B(1,2),点C为直线y=$\frac{1}{3}$x上的动点,则|AC|+|BC|的最小值为(  )
A.$2\sqrt{2}$B.$2\sqrt{3}$C.$2\sqrt{5}$D.$2\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.直线2x-y-1=0被圆(x-3)2+y2=9所截得的弦长为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.记a(m,n)(m,n∈N*)表示从n起连续m(m>1)个正整数的和.
(1)则a(2,3)=7;
(2)将2016写成a(m,n)的形式是(3,671).(只须写出一种正确结果即可)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.五一劳动节期间,记者通过随机询问某景区60名游客对景区的服务是否满意,得到如下的列联表:性别与对景区的服务是否满意(单位:名)
总计
满意24
不满意6
总计60
已知在60人中随机抽取1人,抽到男性的概率为$\frac{2}{5}$.
(I)请将上面的2×2列联表补充完整(直接写结果),并判断是否有75%的把握认为“游客性别与对景区的服务满意”有关,说明理由;
(II)从这60名游客中按对景区的服务是否满意采取分层抽样,抽取一个容量为5的样本,从这5人中任选3人,求所选的3人至少有一名男性的概率.
附:
P(K2≥k00.2500.150.100.050.01
k01.3232.0722.7063.8416.635
K2=$\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$(其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.三棱锥A-BCD中,面ABC⊥底面BCD,∠BAC=90°,AB=AC,∠BCD=90°,∠BDC=60°,BC=2a.
(I)求证:平面ABD⊥平面ACD;
(Ⅱ)求二面角A-BD-C的正切值;
(Ⅲ)求三棱锥A-BCD的侧面积和体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.统计表明某型号汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/小时)的函数为y=$\frac{1}{128000}{x^3}-\frac{3}{80}$x+8(0<x<120)
(1)当x=64千米/小时时,行驶1000千米耗油量多少升?
(2)若油箱有22.5升油,则该型号汽车最多行驶多少千米?

查看答案和解析>>

同步练习册答案