精英家教网 > 高中数学 > 题目详情
15.在直角坐标系中,曲线C1:x2+y2=1经过伸缩变换$\left\{\begin{array}{l}{x′=\sqrt{3}x}\\{y′=\sqrt{2}y}\end{array}\right.$后得到曲线C2
(1)以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,求曲线C2的极坐标方程;
(2)设A,B是曲线C2上不同的两点,且OA⊥OB,求$\frac{1}{O{A}^{2}}$$+\frac{1}{O{B}^{2}}$的值.

分析 (1)由伸缩变换$\left\{\begin{array}{l}{x′=\sqrt{3}x}\\{y′=\sqrt{2}y}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=\frac{1}{\sqrt{3}}{x}^{′}}\\{y=\frac{1}{\sqrt{2}}{y}^{′}}\end{array}\right.$,代入曲线C1的方程可得曲线C2的直角坐标方程,把x=ρcosθ,y=ρsinθ代入可得曲线C2的极坐标方程.
(2)由(1)可得:$\frac{1}{{ρ}^{2}}$=$\frac{co{s}^{2}θ}{3}$+$\frac{si{n}^{2}θ}{2}$,由OA⊥OB,不妨设A(ρ1,θ),B$({ρ}_{2},θ+\frac{π}{2})$,代入化简即可得出.

解答 解:(1)由伸缩变换$\left\{\begin{array}{l}{x′=\sqrt{3}x}\\{y′=\sqrt{2}y}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=\frac{1}{\sqrt{3}}{x}^{′}}\\{y=\frac{1}{\sqrt{2}}{y}^{′}}\end{array}\right.$,代入曲线C1的方程可得:$\frac{({x}^{′})^{2}}{3}$+$\frac{({y}^{′})^{2}}{2}$=1,
即曲线C2的直角坐标方程为:$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{2}$=1,把x=ρcosθ,y=ρsinθ代入可得:曲线C2的极坐标方程为ρ2$(\frac{co{s}^{2}θ}{3}+\frac{si{n}^{2}θ}{2})$=1.
(2)由(1)可得:$\frac{1}{{ρ}^{2}}$=$\frac{co{s}^{2}θ}{3}$+$\frac{si{n}^{2}θ}{2}$,
∵OA⊥OB,不妨设A(ρ1,θ),B$({ρ}_{2},θ+\frac{π}{2})$,
∴$\frac{1}{O{A}^{2}}$$+\frac{1}{O{B}^{2}}$=$\frac{co{s}^{2}θ}{3}$+$\frac{si{n}^{2}θ}{2}$+$\frac{si{n}^{2}θ}{3}$+$\frac{co{s}^{2}θ}{2}$=$\frac{1}{3}+\frac{1}{2}$=$\frac{5}{6}$.

点评 本题考查了极坐标与直角坐标的互化及其应用、坐标变换、三角函数求值,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=xex+ax2-2x,a∈R.
(1)当a=-1时,求函数f(x)的单调区间;
(2)若对x≥0时,恒有f′(x)-f(x)≥(4a+2)x-1成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.关于x的方程$|\begin{array}{l}{1}&{x}&{{x}^{2}}\\{1}&{2}&{4}\\{1}&{3}&{9}\end{array}|$=0的解为x=2或x=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在以原点为极点,x轴正半轴为极轴的极坐标系中,点$M(2,\frac{π}{3})$的直角坐标是(  )
A.$(\sqrt{3},1)$B.$(1,\sqrt{3})$C.$(\frac{{\sqrt{3}}}{2},\frac{1}{2})$D.$(\frac{1}{2},\frac{{\sqrt{3}}}{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.写出下列图形的极坐标方程,且画出图象(已知点为极坐标):
(1)过点(10,$\frac{π}{4}$)且平行于极轴的直线;
(2)过点(10,$\frac{π}{4}$)且垂直于极轴的直线;
(3)过点(1,0)和极轴夹角$\frac{π}{6}$的直线;
(4)圆心在(1,π)、半径为1的圆.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.圆ρ=sinθ的面积为$\frac{π}{4}$面积单位.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在直角坐标系xOy,以O为极点,x轴的正半轴建立直角坐标系,直线l的极坐标方程$ρsin(θ+\frac{π}{4})$=2$\sqrt{2}(m+1)$,而曲线C的参数方程为$\left\{\begin{array}{l}{x=\sqrt{2}cosφ}\\{y=\sqrt{2}sinφ}\end{array}\right.$(其中φ为参数);
(1)若直线l与曲线C恰好有一个公共点,求实数m的值;
(2)当m=-$\frac{3}{4}$,求直线l被曲线C截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.过直线x+2y+5=0上一动点A(A不在y轴上)作焦点为F(2,0)的抛物线y2=2px的两条切线,M,N为切点,直线AM,AN分别与y轴交于点B,C.
(Ⅰ)求证:BF⊥AM,并求△ABC的外接圆面积的最小值;
(Ⅱ)求证:直线MN恒过一定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知△ABC的三个顶点坐标分别为A(-1,0),B(2,3),C(1,2$\sqrt{2}$),且定点P(1,1).
(1)求△ABC的外接圆的标准方程;
(2)若过定点P的直线与△ABC的外接圆交于E,F两点,求弦EF中点的轨迹方程.

查看答案和解析>>

同步练习册答案