分析 (1)由伸缩变换$\left\{\begin{array}{l}{x′=\sqrt{3}x}\\{y′=\sqrt{2}y}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=\frac{1}{\sqrt{3}}{x}^{′}}\\{y=\frac{1}{\sqrt{2}}{y}^{′}}\end{array}\right.$,代入曲线C1的方程可得曲线C2的直角坐标方程,把x=ρcosθ,y=ρsinθ代入可得曲线C2的极坐标方程.
(2)由(1)可得:$\frac{1}{{ρ}^{2}}$=$\frac{co{s}^{2}θ}{3}$+$\frac{si{n}^{2}θ}{2}$,由OA⊥OB,不妨设A(ρ1,θ),B$({ρ}_{2},θ+\frac{π}{2})$,代入化简即可得出.
解答 解:(1)由伸缩变换$\left\{\begin{array}{l}{x′=\sqrt{3}x}\\{y′=\sqrt{2}y}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=\frac{1}{\sqrt{3}}{x}^{′}}\\{y=\frac{1}{\sqrt{2}}{y}^{′}}\end{array}\right.$,代入曲线C1的方程可得:$\frac{({x}^{′})^{2}}{3}$+$\frac{({y}^{′})^{2}}{2}$=1,
即曲线C2的直角坐标方程为:$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{2}$=1,把x=ρcosθ,y=ρsinθ代入可得:曲线C2的极坐标方程为ρ2$(\frac{co{s}^{2}θ}{3}+\frac{si{n}^{2}θ}{2})$=1.
(2)由(1)可得:$\frac{1}{{ρ}^{2}}$=$\frac{co{s}^{2}θ}{3}$+$\frac{si{n}^{2}θ}{2}$,
∵OA⊥OB,不妨设A(ρ1,θ),B$({ρ}_{2},θ+\frac{π}{2})$,
∴$\frac{1}{O{A}^{2}}$$+\frac{1}{O{B}^{2}}$=$\frac{co{s}^{2}θ}{3}$+$\frac{si{n}^{2}θ}{2}$+$\frac{si{n}^{2}θ}{3}$+$\frac{co{s}^{2}θ}{2}$=$\frac{1}{3}+\frac{1}{2}$=$\frac{5}{6}$.
点评 本题考查了极坐标与直角坐标的互化及其应用、坐标变换、三角函数求值,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(\sqrt{3},1)$ | B. | $(1,\sqrt{3})$ | C. | $(\frac{{\sqrt{3}}}{2},\frac{1}{2})$ | D. | $(\frac{1}{2},\frac{{\sqrt{3}}}{2})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com