精英家教网 > 高中数学 > 题目详情
设有一组圆Ck:(x-k+1)2+(y-3k)2=2k4,下列五个命题:
①圆心在定直线上运动;
②存在一条定直线与所有的圆均相切;
③存在一条定直线与所有的圆均相交;
④存在一条定直线与所有的圆均不相交;
⑤所有的圆均不过原点;
其中正确的有
 
(填上所有正确的序号)
考点:圆的标准方程
专题:直线与圆
分析:根据圆的方程找出圆心坐标,发现满足条件的所有圆的圆心在一条直线上,所以这条直线与所有的圆都相交;根据图象可知这些圆互相内含,不存在一条定直线与所有的圆均相切,不存在一条定直线与所有的圆均不相交;利用反证法,假设经过原点,将(0,0)代入圆的方程,因为左边为奇数,右边为偶数,故不存在k使上式成立,假设错误,则圆不经过原点.
解答: 解:根据题意得:圆心(k-1,3k),
圆心在直线y=3(x+1)上,故存在直线y=3(x+1)与所有圆都相交,选项①,③正确;
考虑两圆的位置关系,
圆k:圆心(k-1,3k),半径为
2 
k2

圆k+1:圆心(k-1+1,3(k+1)),即(k,3k+3),
半径为
2
(k+1)2
两圆的圆心距d=
(k-k+1)2+(3k-3k-3)2
=
10

两圆的半径之差R-r=(k+1)2-
2
k2=2
2
k+
2

任取k=1或2时,(R-r>d),Ck含于Ck+1之中,选项②错误;
若k取无穷大,则可以认为所有直线都与圆相交,选项④错误;
将(0,0)带入圆的方程,则有(-k+1)2+9k2=2k4,即10k2-2k+1=2k4(k∈N*),
因为左边为奇数,右边为偶数,故不存在k使上式成立,即所有圆不过原点,选项⑤正确.
则真命题的代号是③⑤.
故答案为:①③⑤.
点评:本题考查命题真假的判断,是一道综合题,要求学生会将直线的参数方程化为普通方程,会利用反证法进行证明,会利用数形结合解决实际问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线l的参数方程为
x=5-
3
2
t
y=-
3
+
1
2
t
(t参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ4cos(θ-
π
3
).
(1)判断直线与圆的位置关系;
(2)若点P(x,y)在圆C上,求
3
x+y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

过点P(0,2)的直线和抛物线y2=8x交于A,B两点,若线段AB的中点在直线x=2上,求弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线C与双曲线x2-y2=a2关于点(3,4)对称,求曲线C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)满足f(x)+1=
1
f(x+1)
,当x∈[0,1]时,f(x)=x,若在区间(-1,1]内,函数g(x)=f(x)-logm(x+2)有两个零点,则实数m的取值范围是(  )
A、(0,
1
3
B、(0,
1
3
]
C、[3,+∞)
D、(1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

若某几何体的三视图是如图所示的三个直角三角形,则该几何体的体积为(  )
A、60B、20C、30D、10

查看答案和解析>>

科目:高中数学 来源: 题型:

ABC是单位圆上不重合的三点,对任意正数x,
OA
=2
OB
+x
OC
,则x的取值
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,椭圆C的焦点为F1(-4,0)、F2(4,0),且经过点P(3,1).
(1)求椭圆C的标准方程;
(2)若点M在椭圆C上,且
OM
=
1
2
PF1
PF2
,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ax+b
1+x2
为奇函数,且定义域为(-1,1),f(
1
2
)=
2
5

(1)求实数a,b的值;
(2)求证:函数f(x)在区间(-1,1)上是增函数.

查看答案和解析>>

同步练习册答案