精英家教网 > 高中数学 > 题目详情

宇宙深处有一颗美丽的行星,这个行星是一个半径为r(r>0)的球。人们在行星表面建立了与地球表面同样的经纬度系统。已知行星表面上的A点落在北纬60°,东经30°;B点落在东经30°的赤道上;C点落在北纬60°,东经90°。在赤道上有点P满足PB两点间的球面距离等于AB两点间的球面距离。
(1)求AC两点间的球面距离;
(2)求P点的经度;
(3)求AP两点间的球面距离。

解析试题分析:(1)根据纬度、经度的定义求出的长,在由余弦定理求的大小,然后用弧长公式
求AC两点间的球面距离,(2)由球面距离定义知∠POB=∠AOB=60°,又P点在赤道上,根据经度的定义可确定P点的经度;(3)连接A,C,,可知A平行OB且等于OB的一半,延长BA与交于D点,那么,同理可证,即四边形为等腰梯形,求出的长,然后解三角形可得的大小。  
试题解析:设球心为,北纬60°圈所对应的圆心为
(1)那么=A=C=。又因为∠AC=60°。
所以AC=。那么由余弦定理得
,则AC两点间的球面距离为
(2)PB两点间的球面距离等于AB两点间的球面距离,所以PB=AB。
可知∠POB=∠AOB=60°,又P点在赤道上,所以P点的经度为东经90°或西经30°。
显然P点的两种可能对应的AP间的球面距离相等。不妨P所在的经度为东经90°。
由条件可知A平行OB且等于OB的一半,延长BA与交于D点,那么。  
C平行OP且等于OP的一半,所以D、P、C共线且
可知AC∥BP,所以A、B、C、P共面。
,所以四边形为等腰梯形,
所以
所以两点之间的球面距离为
考点:(1)纬(经)的定义;(2)球面距离的定义与求法;(3)余弦定理的应用;(4)反三角函数的应用。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图1,直角梯形中,分别为边上的点,且.将四边形沿折起成如图2的位置,使

(1)求证:平面
(2)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示的多面体中,是菱形,是矩形,,
(1)求证:.
(2)若

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,三棱柱中,.

(1)求证:
(2)若,问为何值时,三棱柱体积最大,并求此最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知正方体的棱长为
(1)求四面体的左视图的面积;
(2)求四面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知正△ABC的边长为, CD是AB边上的高,E、F分别是AC和BC边的中点,现将△ABC沿CD翻折成直二面角A-DC-B,如图所示.                    
(1)试判断折叠后直线AB与平面DEF的位置关系,并说明理由;
(2)若棱锥E-DFC的体积为,求的值;
(3)在线段AC上是否存在一点P,使BP⊥DF?如果存在,求出的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB.
(1)求证:CE⊥平面PAD;
(2)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

菱形的边长为3,交于,且.将菱形沿对角线折起得到三棱锥(如图),点是棱的中点,

(1)求证:平面平面
(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知一个空间几何体的三视图如图所示,其中正视图、侧视图都是由半圆和矩形组成,根据图中标出的尺寸,计算这个几何体的表面积是              

查看答案和解析>>

同步练习册答案