精英家教网 > 高中数学 > 题目详情
3.已知曲线C:x2=-2py(p>0),点M是曲线C上的一个动点,过点M且与曲线C相切的直线l的方程为x+y-1=0.
(Ⅰ)求曲线C的方程;
(Ⅱ)点A、B是曲线C上的两点,O为原点,直线AB与x轴交于点P(2,0),记OA、OB的斜率为k1、k2,试探求k1、k2的关系,并证明你的结论.

分析 (I)联立$\left\{\begin{array}{l}{x+y-1=0}\\{{x}^{2}=-2py}\end{array}\right.$,化为x2-2px-2p=0,由于直线l与抛物线相切,可得△=0,解得p即可.
(II)设A(x1,y1),B(x2,y2),直线AB的方程为:y=k(x-2),与抛物线方程联立化为x2+4kx-8k=0,利用斜率计算公式、根与系数的关系即可得出.

解答 解:(I)联立$\left\{\begin{array}{l}{x+y-1=0}\\{{x}^{2}=-2py}\end{array}\right.$,化为x2-2px-2p=0,
∵直线l与抛物线相切,
∴△=4p2-4(-2p)=0,p>0,解得p=2.
∴曲线C的方程为y2=-4y.
(II)设A(x1,y1),B(x2,y2),直线AB的方程为:y=k(x-2),
联立$\left\{\begin{array}{l}{{x}^{2}=-4y}\\{y=k(x-2)}\end{array}\right.$,化为x2+4kx-8k=0,
∴x1+x2=-4k,x1x2=-8k.
∴k1=$\frac{{y}_{1}}{{x}_{1}}$=$\frac{-\frac{{x}_{1}^{2}}{4}}{{x}_{1}}$=-$\frac{{x}_{1}}{4}$,同理可得:k2=$-\frac{{x}_{2}}{4}$.
∴k1+k2=$-\frac{{x}_{1}+{x}_{2}}{4}$=k,k1•k2=$\frac{{x}_{1}{x}_{2}}{16}$=-$\frac{k}{2}$.
消去k可得:k1k2=-$\frac{{k}_{1}+{k}_{2}}{2}$,即$\frac{1}{{k}_{1}}+\frac{1}{{k}_{2}}$=-2.

点评 本题考查了直线与抛物线相切的相切、相交问题转化为方程联立与判别式的关系、根与系数的关系、斜率计算公式,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.阅读如图所示的程序框图,运行相应的程序,若输入n的值为100,则输出S的值为(  )
A.-1050B.5050C.-5050D.-4950

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在平面直角坐标系xOy中,圆C的参数方程为$\left\{\begin{array}{l}{x=1+cosφ}\\{y=sinφ}\end{array}\right.$ (φ为参数),以O为极点,x轴的非负半轴为为极轴建立极坐标系.
(Ⅰ)求圆C的极坐标方程;
(Ⅱ)直线l的极坐标方程式2ρsin(θ+$\frac{π}{3}$ )=3$\sqrt{3}$,射线OM:θ=$\frac{π}{3}$与圆心C的交点为O、P,与直线l的交点为Q,求线段PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右准线l的方程为x=$\frac{4\sqrt{3}}{3}$,焦距为2$\sqrt{3}$.
(1)求椭圆C的方程;
(2)过定点B(1,0)作直线l与椭圆C交于P,Q(异与椭圆C的左、右顶点A1,A2两点),设直线PA1与直线QA2相交于点M.
①若M(4,2),试求点P,Q的坐标;
②求证:点M始终在一条定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知圆M:(x+$\sqrt{3}$)2+y2=24,定点N($\sqrt{3}$,0),点P为圆M上的动点,点Q在NP上;点G在MP上,且满足$\overrightarrow{NP}$=-2$\overrightarrow{PQ}$,$\overrightarrow{CQ}$•$\overrightarrow{NP}$=0
(1)求点G的轨迹C的方程
(2)过点(2,0)作直线l与轴线C交于A,B两点;O是坐标原点,设$\overrightarrow{OS}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$;是否存在这样的直线l,使四边形OASB的对角线相等(即|OS|=|AB|)?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=lnx,g(x)=ax2-x(a≥0)
(1)a=0时,令h(x)=f(x)g(x),求h(x)的极值.
(2)当a=1时,求证:f(x)≤g(x)
(3)若y=f(x)与y=g(x)的图象交于点M,N两点,过线段MN的中点作x轴的垂线分别与f(x)的图象和g(x)的图象交于S,T点,以S为切点作f(x)的切线l1,以t为切点作g(x)的切线l2.是否存在实数a使得l1∥l2,如果存在,求出a的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在同一坐标系中,将椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{25}$=1变换成单位圆的伸缩变换是(  )
A.φ:$\left\{\begin{array}{l}{x′=5x}\\{{y}^{′}=4y}\end{array}\right.$B.φ:$\left\{\begin{array}{l}{{x}^{′}=4x}\\{{y}^{′}=5y}\end{array}\right.$
C.φ:$\left\{\begin{array}{l}{{x}^{′}=\frac{1}{4}x}\\{{y}^{′}=\frac{1}{5}y}\end{array}\right.$D.φ:$\left\{\begin{array}{l}{{x}^{′}=\frac{1}{5}x}\\{{y}^{′}=\frac{1}{4}y}\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数f(x)=ln(1+x),g(x)=xf′(x),其中f′(x)是f(x)的导函数.
(1)求f(x)在x=0处的切线方程;
(2)若f(x)≥ag(x)(x≥0)恒成立,求实数a的取值范围;
(3)设n∈N+,比较g(1)+g(2)+…+g(n)与n-f(n)的大小,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x2-ax+1,其中a∈R,且a≠0.
(1)若f(x)在[-1,1]上不是单调函数,求a的取值范围;
(2)求y=|f(x)|在区间[0,|a|]上的最大值.

查看答案和解析>>

同步练习册答案