11£®Èçͼ£¬ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÓÒ×¼ÏßlµÄ·½³ÌΪx=$\frac{4\sqrt{3}}{3}$£¬½¹¾àΪ2$\sqrt{3}$£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©¹ý¶¨µãB£¨1£¬0£©×÷Ö±ÏßlÓëÍÖÔ²C½»ÓÚP£¬Q£¨ÒìÓëÍÖÔ²CµÄ×ó¡¢ÓÒ¶¥µãA1£¬A2Á½µã£©£¬ÉèÖ±ÏßPA1ÓëÖ±ÏßQA2ÏཻÓÚµãM£®
¢ÙÈôM£¨4£¬2£©£¬ÊÔÇóµãP£¬QµÄ×ø±ê£»
¢ÚÇóÖ¤£ºµãMʼÖÕÔÚÒ»Ìõ¶¨Ö±ÏßÉÏ£®

·ÖÎö £¨1£©ÓÉÍÖÔ²µÄÀëÐÄÂʹ«Ê½ºÍa£¬b£¬cµÄ¹ØÏµ£¬½â·½³Ì¿ÉµÃa£¬b£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£»
£¨2£©¢ÙÇóµÃÖ±ÏßMA1µÄ·½³ÌºÍÒÔMA2µÄ·½³Ì£¬´úÈëÍÖÔ²·½³Ì£¬ÇóµÃ½»µãP£¬QµÄ×ø±ê£»
¢ÚÉèµãM£¨x0£¬y0£©£¬ÇóµÃÖ±ÏßMA1µÄ·½³ÌºÍÒÔMA2µÄ·½³Ì£¬´úÈëÍÖÔ²·½³Ì£¬ÇóµÃ½»µãP£¬QµÄ×ø±ê£¬½áºÏP£¬Q£¬BÈýµã¹²Ïߣ¬ËùÒÔkPB=kQB£¬»¯¼òÕûÀí£¬¿ÉµÃx0-4=0»ò$\frac{{{x}_{0}}^{2}}{4}$+y02=1£®·Ö±ð¿¼ÂÇ£¬¼´¿ÉµÃµ½µãMʼÖÕÔÚÒ»Ìõ¶¨Ö±Ïßx=4ÉÏ£®

½â´ð ½â£º£¨1£©ÓÉ$\left\{\begin{array}{l}{\frac{{a}^{2}}{c}=\frac{4\sqrt{3}}{3}}\\{2c=2\sqrt{3}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$£¬µÃ$\left\{\begin{array}{l}{a=2}\\{b=1}\\{c=\sqrt{3}}\end{array}\right.$£¬ËùÒÔÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{4}$+y2=1£®
£¨2£©¢ÙÒòΪA1£¨-2£¬0£©£¬A2£¨2£¬0£©£¬M£¨4£¬2£©£¬
ËùÒÔMA1µÄ·½³ÌΪy=$\frac{1}{3}$£¨x+2£©£¬´úÈëx2+4y2=4£¬
x2-4+4[$\frac{1}{3}$£¨x+2£©]2=0£¬¼´£¨x+2£©[£¨x-2£©+$\frac{4}{9}$£¨x+2£©]=0
ÒòΪA1µÄºá×ø±êΪ-2£¬ËùÒÔxP=$\frac{10}{13}$£¬ÔòyP=$\frac{12}{13}$£¬
ËùÒÔµãPµÄ×ø±êΪ£¨$\frac{10}{13}$£¬$\frac{12}{13}$£©£®
ͬÀí¿ÉµÃµãQµÄ×ø±êΪ£¨$\frac{6}{5}$£¬-$\frac{4}{5}$£©£®
¢ÚÖ¤Ã÷£ºÉèµãM£¨x0£¬y0£©£¬ÓÉÌâÒâxM¡Ù¡À2£®ÒòΪA1£¨-2£¬0£©£¬A2£¨2£¬0£©£¬
ËùÒÔÖ±ÏßMA1µÄ·½³ÌΪy=$\frac{{y}_{0}}{{x}_{0}+2}$£¨x+2£©£¬´úÈëx2+4y2=4£¬
µÃx2-4+4[$\frac{{y}_{0}}{{x}_{0}+2}$£¨x+2£©]2=0£¬¼´£¨x+2£©[£¨x-2£©+$\frac{4{{y}_{0}}^{2}}{£¨{x}_{0}+2£©^{2}}$£¨x+2£©]=0
ÒòΪA1µÄºá×ø±êΪ-2£¬
ËùÒÔxP=$\frac{2-\frac{8{{y}_{0}}^{2}}{£¨{x}_{0}+2£©^{2}}}{1+\frac{4{{y}_{0}}^{2}}{£¨{x}_{0}+2£©^{2}}}$=$\frac{4£¨{x}_{0}+2£©^{2}}{£¨{x}_{0}+2£©^{2}+4{{y}_{0}}^{2}}$-2£¬ÔòyP=$\frac{4£¨{x}_{0}+2£©{y}_{0}}{£¨{x}_{0}+2£©^{2}+4{{y}_{0}}^{2}}$£¬
¹ÊµãPµÄ×ø±êΪ£¨$\frac{4£¨{x}_{0}+2£©^{2}}{£¨{x}_{0}+2£©^{2}+4{{y}_{0}}^{2}}$-2£¬$\frac{4£¨{x}_{0}+2£©{y}_{0}}{£¨{x}_{0}+2£©^{2}+4{{y}_{0}}^{2}}$£©£¬
ͬÀí¿ÉµÃµãQµÄ×ø±êΪ£¨$\frac{-4£¨{x}_{0}-2£©^{2}}{£¨{x}_{0}-2£©^{2}+4{{y}_{0}}^{2}}$+2£¬$\frac{-4£¨{x}_{0}-2£©{y}_{0}}{£¨{x}_{0}-2£©^{2}+4{{y}_{0}}^{2}}$£©
ÒòΪP£¬Q£¬BÈýµã¹²Ïߣ¬ËùÒÔkPB=kQB£¬$\frac{{y}_{P}}{{x}_{P}-1}$=$\frac{{y}_{Q}}{{x}_{Q}-1}$£®
ËùÒÔ$\frac{\frac{4£¨{x}_{0}+2£©{y}_{0}}{£¨{x}_{0}+2£©^{2}+{{y}_{0}}^{2}}}{\frac{4£¨{x}_{0}+2£©^{2}}{£¨{x}_{0}+2£©^{2}+4{{y}_{0}}^{2}}-2-1}$=$\frac{\frac{-4£¨{x}_{0}-2£©{y}_{0}}{£¨{x}_{0}-2£©^{2}+4{{y}_{0}}^{2}}}{\frac{-4£¨{x}_{0}-2£©^{2}}{£¨{x}_{0}-2£©^{2}+4{{y}_{0}}^{2}}+2-1}$£¬¼´$\frac{£¨{x}_{0}+2£©{y}_{0}}{£¨{x}_{0}+2£©^{2}-12{{y}_{0}}^{2}}$=$\frac{-£¨{x}_{0}-2£©{y}_{0}}{-3£¨{x}_{0}-2£©^{2}+4{{y}_{0}}^{2}}$£¬
ÓÉÌâÒ⣬y0¡Ù0£¬ËùÒÔ$\frac{{x}_{0}+2}{£¨{x}_{0}+2£©^{2}-12{{y}_{0}}^{2}}$=$\frac{{x}_{0}-2}{3£¨{x}_{0}-2£©^{2}-4{{y}_{0}}^{2}}$£¬
¼´3£¨x0+2£©£¨x0-2£©2-4£¨x0+2£©y02=£¨x0-2£©£¨x0+2£©2-12£¨x0-2£©y02£¬
ËùÒÔ£¨x0-4£©£¨$\frac{{{x}_{0}}^{2}}{4}$+y02-1£©=0£¬Ôòx0-4=0»ò$\frac{{{x}_{0}}^{2}}{4}$+y02=1£®
Èô$\frac{{{x}_{0}}^{2}}{4}$+y02=1£¬ÔòµãMÔÚÍÖÔ²ÉÏ£¬P£¬Q£¬MΪͬһµã£¬²»ºÏÌâÒ⣮
ËùÒÔxM=4£¬¼´µãMʼÖÕÔÚ¶¨Ö±Ïßx=4ÉÏ£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌºÍÐÔÖÊ£¬Ö÷Òª¿¼²éÍÖÔ²µÄÀëÐÄÂʺͷ½³ÌµÄÔËÓã¬ÁªÁ¢Ö±Ïß·½³Ì£¬½â·½³ÌÇ󽻵㣬ͬʱ¿¼²éÈýµã¹²ÏßµÄÌõ¼þ£¬¿¼²é»¯¼òÕûÀíµÄÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Ë«ÇúÏßÖÐÐÄÔÚÔ­µã£¬½¹µãÔÚyÖáÉÏ£¬ÀëÐÄÂÊΪ$\sqrt{5}$£¬ÔòÆä½¥½øÏß·½³ÌΪ£¨¡¡¡¡£©
A£®y=$\frac{1}{2}$xB£®y=¡À$\frac{1}{2}$xC£®y=-$\frac{1}{2}$xD£®y=¡À2x

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÈôÒÔA¡¢BΪ½¹µãµÄË«ÇúÏß¾­¹ýµãC£¬ÇÒ|AB|=|AC|£¬cos¡ÏABC=$\frac{1}{3}$£¬Ôò¸ÃË«ÇúÏßµÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£®$\frac{3}{2}$B£®2C£®3D£®$\frac{5}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®É躯Êýf£¨x£©=sinx£¨sinx+cosx£©
£¨1£©Çóf£¨$\frac{¦Ð}{8}$£©µÄÖµ£»
£¨2£©µ±x¡Ê[$\frac{¦Ð}{4}$£¬$\frac{5¦Ð}{12}$]ʱ£¬f£¨x£©¡Ýt-$\frac{12}{t}$ºã³ÉÁ¢£¬ÇóʵÊýtµÄȡֵ·¶Î§
£¨3£©Èôº¯Êýf£¨x£©ÔÚ[0£¬a]ÉϵÄÖµÓòΪ[0£¬$\frac{1+\sqrt{2}}{2}$]£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍSn=2an-2n+1+2£¨nΪÕýÕûÊý£©£®
£¨1£©Ö¤Ã÷£ºÊýÁÐ{$\frac{{a}_{n}}{{2}^{n}}$}ÊǵȲîÊýÁУ¬²¢Çó{an}µÄͨÏʽ£»
£¨2£©Áîbn=log2a1+log2$\frac{{a}_{2}}{2}$+¡­+log2$\frac{{a}_{n}}{n}$£¬ÉèÊýÁÐ{$\frac{1}{{b}_{n}}$}µÄǰnÏîºÍΪTn£¬ÊÇ·ñ´æÔÚʵÊýM£¬Ê¹µÃTn¡ÜM¶ÔÒ»ÇÐÕýÕûÊý¶¼³ÉÁ¢£¿Èô´æÔÚ£¬Çó³öMµÄ×îСֵ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÒÑÖª¶¨ÒåÓòΪRµÄº¯Êýf£¨x£©Âú×㣺£¨1£©µ±x¡Ê£¨0£¬1]ʱ£¬f£¨x£©=x2£»£¨2£©f£¨x+1£©=2f£¨x£©£¬Ôò$\frac{f£¨x£©}{{2}^{x}}$µÄ×î´óֵΪ£¨¡¡¡¡£©
A£®$\frac{1}{2}$B£®$\frac{1}{3}$C£®1D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªÇúÏßC£ºx2=-2py£¨p£¾0£©£¬µãMÊÇÇúÏßCÉϵÄÒ»¸ö¶¯µã£¬¹ýµãMÇÒÓëÇúÏßCÏàÇеÄÖ±ÏßlµÄ·½³ÌΪx+y-1=0£®
£¨¢ñ£©ÇóÇúÏßCµÄ·½³Ì£»
£¨¢ò£©µãA¡¢BÊÇÇúÏßCÉϵÄÁ½µã£¬OΪԭµã£¬Ö±ÏßABÓëxÖá½»ÓÚµãP£¨2£¬0£©£¬¼ÇOA¡¢OBµÄбÂÊΪk1¡¢k2£¬ÊÔ̽Çók1¡¢k2µÄ¹ØÏµ£¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÔÚ¼¸ºÎÌåABCDEÖУ¬¡÷ABCÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬¡ÏABC=90¡ã£¬BEºÍCD¶¼´¹Ö±ÓÚÆ½ÃæABC£¬ÇÒEB=AB=2£¬CD=1£¬
£¨1£©Çó¶þÃæ½ÇD-AB-CµÄÕýÇÐÖµ
£¨2£©ÇóADÓëÆ½ÃæABEËù³É½ÇµÄÕýÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªa¡ÊR£¬f£¨x£©=x|x-a|£®
£¨1£©ÅжÏf£¨x£©µÄÆæÅ¼ÐÔ²¢Ö¤Ã÷£»
£¨2£©µ±a£¾0ʱ£¬Çóf£¨x£©ÔÚ[0£¬1]µÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸