精英家教网 > 高中数学 > 题目详情
8.若以A、B为焦点的双曲线经过点C,且|AB|=|AC|,cos∠ABC=$\frac{1}{3}$,则该双曲线的离心率为(  )
A.$\frac{3}{2}$B.2C.3D.$\frac{5}{2}$

分析 先确定C在双曲线的右支上,由双曲线定义知$|{BD}|=\frac{1}{2}|{BC}|=\frac{1}{2}(2c-2a)=c-a$,利用$cos∠ABD=\frac{1}{3}$,可得$\frac{c-a}{2c}=\frac{1}{3}$,即可求出双曲线的离心率.

解答 解:不妨设A、B为左、右焦点,实半轴长为a,半焦距为c,若点C在双曲线的左支上,设BC中点为D,则
由定义知|BD|=$\frac{1}{2}$|BC|=$\frac{1}{2}$(2c+2a)=c+a,
在Rt△ABD中,由cos∠ABC=$\frac{1}{3}$,故$\frac{c+a}{2c}=\frac{1}{3},e=-3$,不可能.
故C在双曲线的右支上,
设BC中点为D,则由双曲线定义知$|{BD}|=\frac{1}{2}|{BC}|=\frac{1}{2}(2c-2a)=c-a$,
在Rt△ABD中,$cos∠ABD=\frac{1}{3}$,故$\frac{c-a}{2c}=\frac{1}{3}$,得$e=\frac{c}{a}=3$.
故选:C.

点评 本题考查双曲线的离心率,考查学生分析解决问题的能力,确定C在双曲线的右支上是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.如图,圆O中AB=4为直径,直线CE与圆O相切于点C,AD⊥CE于点D,若AD=1,∠ACD=θ,则cosθ=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.阅读如图所示的程序框图,运行相应的程序,若输入n的值为100,则输出S的值为(  )
A.-1050B.5050C.-5050D.-4950

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知F1是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点,过F1且垂直于x轴的直线与双曲线交于A、B两点,E是双曲线的右顶点,若△ABE是钝角三角形,则该双曲线的离心率的取值范围是(  )
A.(1,$\sqrt{3}$)B.($\sqrt{3}$,2)C.(2,+∞)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ex+sinx-ax
(Ⅰ)求使得x=0成为f(x)极值点的a的值;
(Ⅱ)当a∈(0,2],x∈[0,+∞)时,求f(x)最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知f(x+1)是周期为2的奇函数,当-1≤x≤0时,f(x)=-2x(x+1),则f(-$\frac{3}{2}$)的值为(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.-$\frac{1}{4}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在平面直角坐标系xOy中,圆C的参数方程为$\left\{\begin{array}{l}{x=1+cosφ}\\{y=sinφ}\end{array}\right.$ (φ为参数),以O为极点,x轴的非负半轴为为极轴建立极坐标系.
(Ⅰ)求圆C的极坐标方程;
(Ⅱ)直线l的极坐标方程式2ρsin(θ+$\frac{π}{3}$ )=3$\sqrt{3}$,射线OM:θ=$\frac{π}{3}$与圆心C的交点为O、P,与直线l的交点为Q,求线段PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右准线l的方程为x=$\frac{4\sqrt{3}}{3}$,焦距为2$\sqrt{3}$.
(1)求椭圆C的方程;
(2)过定点B(1,0)作直线l与椭圆C交于P,Q(异与椭圆C的左、右顶点A1,A2两点),设直线PA1与直线QA2相交于点M.
①若M(4,2),试求点P,Q的坐标;
②求证:点M始终在一条定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数f(x)=ln(1+x),g(x)=xf′(x),其中f′(x)是f(x)的导函数.
(1)求f(x)在x=0处的切线方程;
(2)若f(x)≥ag(x)(x≥0)恒成立,求实数a的取值范围;
(3)设n∈N+,比较g(1)+g(2)+…+g(n)与n-f(n)的大小,并加以证明.

查看答案和解析>>

同步练习册答案