| A. | (1,$\sqrt{3}$) | B. | ($\sqrt{3}$,2) | C. | (2,+∞) | D. | (1,2) |
分析 利用双曲线的对称性及∠AEB是钝角,得到AF>EF,求出AF,CF得到关于a,b,c的不等式,求出离心率的范围.
解答 解:∵双曲线关于x轴对称,且直线AB垂直x轴,
∴∠AEF=∠BEF,
∵△ABE是钝角三角形,∴∠AEB是钝角,
∴AF>EF,
∵F为右焦点,过F且垂直于x轴的直线与双曲线交于A、B两点,
∴AF=$\frac{{b}^{2}}{a}$,
∵EF=a+c,
∴$\frac{{b}^{2}}{a}$>a+c,即e2-e-2>0,
解得e>2或e<-1,
双曲线的离心率的范围是(2,+∞),
故选:C.
点评 本题考查双曲线的对称性、考查双曲线的三参数关系:c2=a2+b2、考查双曲线的离心率问题就是研究三参数a,b,c的关系.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=$\frac{1}{2}$x | B. | y=±$\frac{1}{2}$x | C. | y=-$\frac{1}{2}$x | D. | y=±2x |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$ | B. | 2 | C. | 3 | D. | $\frac{5}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com