6£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{b}^{2}}$+$\frac{{y}^{2}}{{a}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊe=$\frac{{\sqrt{2}}}{2}$£¬ÓÒ¶¥µãΪA£¬µãM£¨1£¬0£©ÎªÏß¶ÎOAµÄÖе㣬ÆäÖÐOÎª×ø±êÔ­µã£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©¹ýµãMÈÎ×÷Ò»ÌõÖ±Ïß½»ÍÖÔ²CÓÚ²»Í¬µÄÁ½µãE£¬F£¬ÊÔÎÊÔÚxÖáÉÏÊÇ·ñ´æÔÚ¶¨µãN£¬Ê¹µÃ¡ÏENM=¡ÏFNM£¿Èô´æÔÚ£¬Çó³öµãNµÄ×ø±ê£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨¢ñ£©Í¨¹ýµãM£¨1£¬0£©ÎªÏß¶ÎOAµÄÖеã¿ÉÖªb=2£¬ÀûÓÃ$\frac{c}{a}=\frac{{\sqrt{2}}}{2}$£¬a2-b2=c2£¬¼ÆËã¼´µÃ½áÂÛ£»
£¨¢ò£© Í¨¹ýÉè´æÔÚµãN£¨x0£¬0£©Âú×ãÌâÉèÌõ¼þ£¬·ÖEFÓëxÖá²»´¹Ö±Óë²»´¹Ö±Á½ÖÖÇé¿öÌÖÂÛ£¬ÀûÓÃΤ´ï¶¨Àí»¯¼ò¡¢¼ÆËã¼´µÃ½áÂÛ£®

½â´ð ½â£º£¨¢ñ£© ÓÉÌâÒâ¿ÉµÃb=2£¬
ÓÖÒòΪ$\frac{c}{a}=\frac{{\sqrt{2}}}{2}$£¬a2-b2=c2£¬
ËùÒÔ $a=2\sqrt{2}$£¬
¹ÊËùÇóÍÖÔ²CµÄ·½³ÌΪ$\frac{x^2}{4}+\frac{y^2}{8}=1$£»
£¨¢ò£© ½áÂÛ£ºÔÚxÖáÉÏ´æÔÚµãN£¨4£¬0£©£¬Ê¹µÃ¡ÏENM=¡ÏFNM£®
ÀíÓÉÈçÏ£º
¼ÙÉè´æÔÚµãN£¨x0£¬0£©Âú×ãÌâÉèÌõ¼þ£¬
£¨1£©µ±EFÓëxÖá²»´¹Ö±Ê±£¬ÉèEFµÄ·½³ÌΪy=k£¨x-1£©£®
Ôò$\left\{\begin{array}{l}y=k£¨x-1£©\\ \frac{x^2}{4}+\frac{y^2}{8}=1\end{array}\right.$ÏûÈ¥y£¬ÕûÀíµÃ£º£¨2+k2£©x2-2k2x+k2-8=0£®
¿ÉÖª¡÷£¾0£¬ÉèE£¨x1£¬y1£©£¬F£¨x2£¬y2£©£¬
Ôò${x_1}+{x_2}=\frac{{2{k^2}}}{{2+{k^2}}}$£¬${x_1}{x_2}=\frac{{{k^2}-8}}{{2+{k^2}}}$£¬
${k_{EN}}+{k_{FN}}=\frac{y_1}{{{x_1}-{x_0}}}+\frac{y_2}{{{x_2}-{x_0}}}=\frac{{k£¨{x_1}-1£©}}{{{x_1}-{x_0}}}+\frac{{k£¨{x_2}-1£©}}{{{x_2}-{x_0}}}$=$\frac{{k£¨{x_1}-1£©£¨{x_2}-{x_0}£©+k£¨{x_2}-1£©£¨{x_1}-{x_0}£©}}{{£¨{x_1}-{x_0}£©£¨{x_2}-{x_0}£©}}$£¬
£¨x1-1£©£¨x2-x0£©+£¨x2-1£©£¨x1-x0£©=2x1x2-£¨1+x0£©£¨x1+x2£©+2x0=$\frac{2£¨{k}^{2}-8£©}{2+{k}^{2}}$-$\frac{2£¨1+{x}_{0}£©{k}^{2}}{2+{k}^{2}}$+2x0£¬
Èô¡ÏENM=¡ÏFNM£¬ÔòkEN+kFN=0£¬$¼´\;k[{\frac{{2£¨{k^2}-8£©}}{{2+{k^2}}}-\frac{{2£¨1+{x_0}£©{k^2}}}{{2+{k^2}}}+2{x_0}}]=0$£¬
ÕûÀíµÃ£ºk£¨x0-4£©=0£¬ÒòΪk¡ÊR£¬ËùÒÔx0=4£»
£¨2£©µ±EF¡ÍxÖáʱ£¬ÓÉÍÖÔ²µÄ¶Ô³ÆÐÔ¿ÉÖªºãÓСÏENM=¡ÏFNM£¬Âú×ãÌâÒ⣻
×ÛÉÏ£¬ÔÚxÖáÉÏ´æÔÚµãN£¨4£¬0£©£¬Ê¹µÃ¡ÏENM=¡ÏFNM£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ¼òµ¥ÐÔÖÊ£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÒÑÖª¼¯ºÏM={ x|y=lg[£¨x-2£©£¨x+1£©]}£¬N={ y|y=$\sqrt{x+1}$}£¬È«¼¯ÎªÊµÊý¼¯R£¬ÔòM¡ÉN=£¨2£¬+¡Þ£©£¬M¡ÈN=£¨-¡Þ£¬-1£©¡È[0£¬+¡Þ£©£¬CRM=[-1£¬2]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªº¯Êýf£¨x£©=sin£¨x+$\frac{¦Ð}{6}$£©+cosx£¬x¡ÊR£¬
£¨1£©Çóº¯Êýf£¨x£©µÄ×î´óÖµ£¬²¢Ð´³öµ±f£¨x£©È¡µÃ×î´óֵʱxµÄȡֵ¼¯ºÏ£»
£¨2£©Èô¦Á¡Ê£¨0£¬$\frac{¦Ð}{2}$£©£¬f£¨¦Á+$\frac{¦Ð}{6}$£©=$\frac{3\sqrt{3}}{5}$£¬Çóf£¨2¦Á£©µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÒÑÖªÓ³Éäf£ºP£¨m£¬n£©¡úP¡ä£¨-m£¬2n£©£¨m¡Ý0£¬n¡Ý0£©£®ÉèµãA£¨1£¬3£©£¬B£¨3£¬1£©£¬µãMÊÇÏß¶ÎABÉÏÒ»¶¯µã£¬f£ºM¡úM¡ä£®µ±µãMÊÇÏß¶ÎABµÄÖеãʱ£¬µãM¡äµÄ×ø±êÊÇ£¨-2£¬4£©£»µ±µãMÔÚÏß¶ÎABÉÏ´ÓµãA¿ªÊ¼Ô˶¯µ½µãB½áÊøÊ±£¬µãMµÄ¶ÔÓ¦µãM'Ëù¾­¹ýµÄ·Ïß³¤¶ÈΪ$2\sqrt{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®Èçͼ£¬Ö±ÏßMN¹ý¡÷ABCµÄÖØÐÄG£¨ÖØÐÄÊÇÈý½ÇÐÎÈýÌõÖÐÏߵĽ»µã£©£¬Éè$\overrightarrow{AB}$=$\overrightarrow{a}$£¬$\overrightarrow{AC}$=$\overrightarrow{b}$£¬ÇÒ$\overrightarrow{AM}$=m$\overrightarrow{a}$£¬$\overrightarrow{AN}$=n$\overrightarrow{b}$£¨ÆäÖÐm£¾0£¬n£¾0£©£¬ÔòmnµÄ×îСֵÊÇ£¨¡¡¡¡£©
A£®$\frac{2}{9}$B£®$\frac{1}{2}$C£®$\frac{4}{9}$D£®$\frac{2}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÒÑ֪ʵÊýx£¬yÂú×ã²»µÈʽ×é$\left\{\begin{array}{l}{x+y¡Ü3}\\{x+y¡Ý2}\\{x¡Ý0£¬y¡Ý0}\end{array}\right.$Èôz=x-y£¬ÔòzµÄ×î´óֵΪ£¨¡¡¡¡£©
A£®3B£®4C£®5D£®6

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®Èçͼ£¬Ô²OÖÐAB=4Ϊֱ¾¶£¬Ö±ÏßCEÓëÔ²OÏàÇÐÓÚµãC£¬AD¡ÍCEÓÚµãD£¬ÈôAD=1£¬¡ÏACD=¦È£¬Ôòcos¦È=$\frac{\sqrt{3}}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®É躯Êýf£¨x£©=£¨$\frac{1}{2}$-$\sqrt{2}$£©n£¬ÆäÖÐn=3${¡Ò}_{-\frac{¦Ð}{2}}^{\frac{¦Ð}{2}}$cosxdx£¬Ôòf£¨x£©µÄÕ¹¿ªÊ½ÖÐx2µÄϵÊýΪ15£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÒÑÖªF1ÊÇË«ÇúÏß$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄ×󽹵㣬¹ýF1ÇÒ´¹Ö±ÓÚxÖáµÄÖ±ÏßÓëË«ÇúÏß½»ÓÚA¡¢BÁ½µã£¬EÊÇË«ÇúÏßµÄÓÒ¶¥µã£¬Èô¡÷ABEÊǶ۽ÇÈý½ÇÐΣ¬Ôò¸ÃË«ÇúÏßµÄÀëÐÄÂʵÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨1£¬$\sqrt{3}$£©B£®£¨$\sqrt{3}$£¬2£©C£®£¨2£¬+¡Þ£©D£®£¨1£¬2£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸