精英家教网 > 高中数学 > 题目详情
15.设函数f(x)=($\frac{1}{2}$-$\sqrt{2}$)n,其中n=3${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$cosxdx,则f(x)的展开式中x2的系数为15.

分析 先由定积分的运算可得n的值,在二项展开式的通项公式中,令x的幂指数等于0,求出r的值,即可求得展开式中x2的系数.

解答 解:∵n=3${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$cosxdx=3sinx|${\;}_{-\frac{π}{2}}^{\frac{π}{2}}$=3(sin$\frac{π}{2}$-sin(-$\frac{π}{2}$))=6,
($\frac{1}{2}$x-$\sqrt{2}$)6的展开式的通项公式为 Tr+1=${C}_{6}^{r}$•($\frac{1}{2}$x)6-r•(-$\sqrt{2}$)r
令6-r=2,解得 r=4,
∴展开式中x2的系数为:${C}_{6}^{4}$•$(\frac{1}{2})^{2}•(-\sqrt{2})^{4}$=15.
故答案为:15.

点评 本题主要考查定积分的运算,二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.若集合A={x|x2+$\sqrt{m}$x+1=0},且A∩R=∅,则实数m的取值范围用区间表示为(-∞,4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C:$\frac{{x}^{2}}{{b}^{2}}$+$\frac{{y}^{2}}{{a}^{2}}$=1(a>b>0)的离心率e=$\frac{{\sqrt{2}}}{2}$,右顶点为A,点M(1,0)为线段OA的中点,其中O为坐标原点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点M任作一条直线交椭圆C于不同的两点E,F,试问在x轴上是否存在定点N,使得∠ENM=∠FNM?若存在,求出点N的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{1}{3}$x3+ax+4.
(1)讨论函数f(x)的单调区间;
(2)当a=-4时,若函数f(x)在区间[m,3]上的最大值为$\frac{28}{3}$,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}{x=1+\sqrt{2}cosα}\\{y=1+\sqrt{2}sinα}\end{array}\right.$(α为参数),以坐标原点O为极点,以x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程是ρcos(θ-$\frac{π}{4}$)=$\sqrt{2}$.
(1)写出曲线C的普通方程,直线l的直角坐标方程;
(2)设P为曲线C上任意一点,直线l和曲线C交于A,B两点,求|PA|2+|PB|2+|PO|2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在平面直角坐标系xOy中,双曲线中心在原点,焦点在y轴上,一条渐近线方程为x-3y=0,则它的离心率为(  )
A.$\sqrt{5}$B.$\sqrt{10}$C.2$\sqrt{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在平面直角坐标系xOy中,双曲线中心在原点,焦点在y轴上,离心率为$\sqrt{5}$,则其渐进线方程为(  )
A.y=$\frac{1}{2}$xB.y=±$\frac{1}{2}$xC.y=-$\frac{1}{2}$xD.y=±2x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知m=${∫}_{0}^{π}$(sint+cost)dt,则${(x-\frac{1}{mx})^{3m}}$的展开式的常数项为-$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=sinx(sinx+cosx)
(1)求f($\frac{π}{8}$)的值;
(2)当x∈[$\frac{π}{4}$,$\frac{5π}{12}$]时,f(x)≥t-$\frac{12}{t}$恒成立,求实数t的取值范围
(3)若函数f(x)在[0,a]上的值域为[0,$\frac{1+\sqrt{2}}{2}$],求实数a的取值范围.

查看答案和解析>>

同步练习册答案