精英家教网 > 高中数学 > 题目详情
16.已知集合M={ x|y=lg[(x-2)(x+1)]},N={ y|y=$\sqrt{x+1}$},全集为实数集R,则M∩N=(2,+∞),M∪N=(-∞,-1)∪[0,+∞),CRM=[-1,2].

分析 根据已知结合求出对应函数的定义域和值域M,N,结合集合交集,并集和补集的定义,可得结论.

解答 解:∵集合M={ x|y=lg[(x-2)(x+1)]}=(-∞,-1)∪(2,+∞),
N={ y|y=$\sqrt{x+1}$}=[0,+∞),
∴M∩N=(2,+∞),
M∪N=(-∞,-1)∪[0,+∞),
CRM=[-1,2],
故答案为:(2,+∞),(-∞,-1)∪[0,+∞),[-1,2]

点评 此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.数列{an}的前n项和为Sn,2Sn-an=n,若S2k-1=360,则k=360.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.对于函数f(x)=tex-x,若存在实数a,b(a<b),使得f(x)≤0的解集为[a,b],则实数t的取值范围是(0,$\frac{1}{e}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.三棱锥的四个面中,设Rt△的个数为n,若当n取最大值时,该三棱锥的最大棱长为(n+1)2-2n,则该三棱锥外接球的表面积为81π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列函数中,满足“f(x+y)=f(x)f(y)”的单调递减函数是(  )
A.f(x)=x${\;}^{\frac{1}{2}}$B.f(x)=x3C.f(x)=($\frac{1}{2}$)xD.f(x)=3x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设正实数x,y,z满足x+y+z=4,xy+yz+zx=5,则y的取值范围为[$\frac{2}{3}$,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若曲线y=$\frac{x+1}{x-1}$在点(3,2)处的切线与直线ax+y+1=0平行,则a=(  )
A.2B.$\frac{1}{2}$C.-$\frac{1}{2}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若集合A={x|x2+$\sqrt{m}$x+1=0},且A∩R=∅,则实数m的取值范围用区间表示为(-∞,4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C:$\frac{{x}^{2}}{{b}^{2}}$+$\frac{{y}^{2}}{{a}^{2}}$=1(a>b>0)的离心率e=$\frac{{\sqrt{2}}}{2}$,右顶点为A,点M(1,0)为线段OA的中点,其中O为坐标原点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点M任作一条直线交椭圆C于不同的两点E,F,试问在x轴上是否存在定点N,使得∠ENM=∠FNM?若存在,求出点N的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案