精英家教网 > 高中数学 > 题目详情
7.对于函数f(x)=tex-x,若存在实数a,b(a<b),使得f(x)≤0的解集为[a,b],则实数t的取值范围是(0,$\frac{1}{e}$).

分析 转化tex≤x,为t的不等式,求出表达式的最大值,以及单调区间,即可得到t的取值范围.

解答
解:tex≤x(e是自然对数的底数),转化为t≤$\frac{x}{{e}^{x}}$,
令y=$\frac{x}{{e}^{x}}$,
则y′=$\frac{{e}^{x}-x{e}^{x}}{{e}^{2x}}$,令y′=0,可得x=1,
当x>1时,y′<0,函数y递减;当x<1时,y′>0,函数y递增.
则当x=1时函数y取得最大值$\frac{1}{e}$,
由于存在实数a、b,使得f(x)≤0的解集为[a,b],
则由右边函数y=$\frac{x}{{e}^{x}}$的图象可得t的取值范围为(0,$\frac{1}{e}$).
故答案为(0,$\frac{1}{e}$).

点评 本题考查函数的导数的最值的应用,考查转化思想与计算能力.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.函数f(x)=2x+x-4的零点坐在的区间为(  )
A.(-1,0)B.(0,1)C.(1,2)D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设O是坐标原点,F是抛物线y=x2的焦点,A是抛物线上的一点,FA与x轴正向的夹角为$\frac{π}{6}$,则|$\overrightarrow{AF}$|=(  )
A.$\frac{1}{2}$B.$\frac{3}{4}$C.1D.2+$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知角A,B,C为△ABC的三个内角,那么$\frac{1}{2}$[cos(A-B)-cos(A+B)]sin2C的取值范围是(  )
A.(0,$\frac{20}{27}$]B.(0,$\frac{16}{27}$]C.(0,$\frac{9}{16}$]D.(0,$\frac{7}{16}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设F是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点,O为坐标原点,点A,B分别在双曲线的两条渐近线上,AF⊥x轴,BF∥OA,$\overrightarrow{AB}$•$\overrightarrow{OB}$=0,则该双曲线的离心率为$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知PA是圆O的切线,切点为A,PA=2,AC是圆O的直径,PC与圆O交于点B,PB=1,则AC=2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.执行如图所示的程序框图,则输出的S的值为(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知集合M={ x|y=lg[(x-2)(x+1)]},N={ y|y=$\sqrt{x+1}$},全集为实数集R,则M∩N=(2,+∞),M∪N=(-∞,-1)∪[0,+∞),CRM=[-1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=sin(x+$\frac{π}{6}$)+cosx,x∈R,
(1)求函数f(x)的最大值,并写出当f(x)取得最大值时x的取值集合;
(2)若α∈(0,$\frac{π}{2}$),f(α+$\frac{π}{6}$)=$\frac{3\sqrt{3}}{5}$,求f(2α)的值.

查看答案和解析>>

同步练习册答案