精英家教网 > 高中数学 > 题目详情
2.设F是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点,O为坐标原点,点A,B分别在双曲线的两条渐近线上,AF⊥x轴,BF∥OA,$\overrightarrow{AB}$•$\overrightarrow{OB}$=0,则该双曲线的离心率为$\frac{2\sqrt{3}}{3}$.

分析 设kOB=-$\frac{b}{a}$,利用$\overrightarrow{AB}$•$\overrightarrow{OB}$=0,可得kAB=$\frac{a}{b}$,再求出A,B的坐标,可得kAB=$\frac{3b}{a}$,即可求出双曲线的离心率.

解答 解:由题意,设kOB=-$\frac{b}{a}$,
∵$\overrightarrow{AB}$•$\overrightarrow{OB}$=0,
∴kAB=$\frac{a}{b}$,
直线FB的方程为y=$\frac{b}{a}$(x-c),
与y=-$\frac{b}{a}$x联立可得B($\frac{c}{2}$,-$\frac{bc}{2a}$)
∵A(c,$\frac{bc}{a}$),
∴kAB=$\frac{3b}{a}$=$\frac{a}{b}$,
∴b2=$\frac{1}{3}$a2
∴c2=a2+b2=$\frac{4}{3}$a2
∴e=$\frac{c}{a}$=$\frac{2\sqrt{3}}{3}$.
故答案为:$\frac{2\sqrt{3}}{3}$.

点评 本题考查双曲线的离心率,考查向量知识,考查学生分析解决问题的能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.设函数f(x)=-lnx+x2
(1)判断f(x)的单调性;
(2)求f(x)在区间[$\frac{1}{4}$,$\frac{3}{4}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.请先根据三视图绘制直观图,并计算物体体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知点(x,y)在如图所示的阴影部分内(含边界)运动,则z=x+2y的最大值是(  )
A.0B.2C.3D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.适合(1-$\frac{10}{100}$)n<$\frac{1}{2}$的最小正整数n的值为(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.对于函数f(x)=tex-x,若存在实数a,b(a<b),使得f(x)≤0的解集为[a,b],则实数t的取值范围是(0,$\frac{1}{e}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.从左至右依次站着甲、乙、丙3个人,从中随机抽取2个人进行位置调换,则经过两次这样的调换后,甲在乙左边的概率是(  )
A.$\frac{1}{2}$B.$\frac{4}{9}$C.$\frac{2}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列函数中,满足“f(x+y)=f(x)f(y)”的单调递减函数是(  )
A.f(x)=x${\;}^{\frac{1}{2}}$B.f(x)=x3C.f(x)=($\frac{1}{2}$)xD.f(x)=3x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)右支上的一点P(x0,y0)到左焦点的距离与到右焦点的距离之差为2$\sqrt{2}$,且到两条渐进线的距离之积为$\frac{2}{3}$,则该双曲线的离心率为(  )
A.$\sqrt{5}$B.$\sqrt{6}$C.$\frac{\sqrt{5}}{2}$D.$\frac{\sqrt{6}}{2}$

查看答案和解析>>

同步练习册答案