精英家教网 > 高中数学 > 题目详情
12.已知直线l过点P(2,1),且倾斜角θ=45o
(1)写出直线的参数方程;
(2)求直线l与直线y=2x的交点坐标.

分析 (1)根据直线标准参数方程的几何意义得出;
(2)把l的参数方程代入y=2x,求出交点对应的参数t,从而得出交点坐标.

解答 解:(1)直线l的参数方程为$\left\{\begin{array}{l}{x=2+\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数);
(2)把$\left\{\begin{array}{l}{x=2+\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$代入y=2x得:1+$\frac{\sqrt{2}}{2}t$=2(2+$\frac{\sqrt{2}}{2}$t),
解得:t=-3$\sqrt{2}$.
∴x=2+$\frac{\sqrt{2}}{2}$×(-3$\sqrt{2}$)=-1,y=1+$\frac{\sqrt{2}}{2}$×(-3$\sqrt{2}$)=-2.
∴直线l与直线y=2x的交点坐标为(-1,-2).

点评 本题考查了直线的参数方程,参数方程的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知数列{an}的前n项和为Sn,对任意的n∈N*,点(n,Sn)在二次函数f(x)=x2的图象上.
(Ⅰ)求通项公式an
(Ⅱ)设bn=$\frac{{a}_{n}}{{2}^{n}}$,且n∈N*,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.无论k为何值时,直线(k+2)x+(1-k)y-4k-5=0都恒过定点P.求P点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若关于x的不等式a≤$\frac{3}{4}$x2-3x+4≤b的解集恰好为[a,b],那么b-a=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)=x2-x-2,x∈[-2,2],在定义域内任取一点x0,使f(x0)≤0的概率是(  )
A.$\frac{1}{8}$B.$\frac{3}{4}$C.$\frac{1}{2}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.函数f(x)=$\frac{1}{3}$x3-$\frac{a}{2}$x2+(3-a)x+b在(0,+∞)上既有极大值又有极小值,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在一次随机试验中,彼此互斥的事件A,B,C,D的概率分别是0.2,0.1,0.3,0.4,则下列说法正确的是(  )
A.A+B与C是互斥事件,也是对立事件
B.B+C与D是互斥事件,也是对立事件
C.A+C与B+D是互斥事件,但不是对立事件
D.A与B+C+D是互斥事件,也是对立事件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.曲线y=$\frac{lnx-2x}{x}$在点(1,f(1))处的切线方程为(  )
A.y=x-3B.y=-x+1C.y=2x-2D.y=-2x+2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知圆C:x2+y2-8y+12=0,直线l:ax+y+2a=0
(1)当直线l与圆C相切时,求a的值;
(2)当a=-1时,直线l与圆C相交于A,B两点,求|AB|.

查看答案和解析>>

同步练习册答案