精英家教网 > 高中数学 > 题目详情

如图,三棱柱的所有棱长都为,且平面中点.

(Ⅰ)求证:
(Ⅱ)求二面角的大小的余弦值;
(Ⅲ)求点到平面的距离.

(1)欲证AB1⊥平面A1BD,根据直线与平面垂直的判定定理可知只需证AB1与平面A1BD内两相交直线垂直,而AB1⊥A1B,AB1⊥DO,A1B∩DO=O,满足定理所需条件.
(2)
(3)

解析试题分析:解析: (Ⅰ)取中点,连结
为正三角形,
平面平面
平面平面平面.  1分
中点,以为原点,的方向为轴的正方向建立空间直角坐标系,则



平面. 4分
(Ⅱ)设平面的法向量为



为平面的一个法向量.
由(Ⅰ)知平面为平面的法向量.

二面角的余弦值为.  9分
(Ⅲ)由(Ⅱ),为平面法向量,
到平面的距离.  13分
考点:空间中角和距离的求解
点评:主要是考查了运用向量法来求解空间中的角和距离的求解,属于中档题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图:正方体的棱长为1,点分别是的中点

(1)求证: 
(2)求异面直线所成角的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在长方体,中,,点在棱AB上移动.

(1 )证明:
(2)当的中点时,求点到面的距离;  
(3)等于何值时,二面角的大小为.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,四边形ABCD是矩形,,F为CE上的点,且BF平面ACE,AC与BD交于点G

(1)求证:AE平面BCE
(2)求证:AE//平面BFD

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,  AB//CD,∠DAB=90°,PA=AD=DC=1,AB=2,M为PB的中点.

(I)证明:MC//平面PAD;
(II)求直线MC与平面PAC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,几何体中,四边形为菱形,,面∥面,都垂直于面,且的中点.

(Ⅰ)求证:为等腰直角三角形;
(Ⅱ)求证:∥面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在正方体ABCD—A1B1C1D1中,E、F分别为棱BB1和DD1的中点.

(1)求证:平面B1FC//平面ADE;
(2)试在棱DC上取一点M,使平面ADE;
(3)设正方体的棱长为1,求四面体A­1—FEA的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,矩形中,上的点,且,AC、BD交于点G.

(1)求证:
(2)求证;
(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱柱ABC—中,底面为正三角形,平面ABC,=2AB,N是的中点,M是线段上的动点。

(1)当M在什么位置时,,请给出证明;
(2)若直线MN与平面ABN所成角的大小为,求的最大值。

查看答案和解析>>

同步练习册答案