【题目】古希腊数学家阿波罗尼奧斯(约公元前262~公元前190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,他证明过这样一个命题:平面内与两定点距离的比为常数k(k>0,k≠1)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.在平面直角坐标系中,设A(﹣3,0),B(3,0),动点M满足
=2,则动点M的轨迹方程为()
A. (x﹣5)2+y2=16B. x2+(y﹣5)2=9
C. (x+5)2+y2=16D. x2+(y+5)2=9
科目:高中数学 来源: 题型:
【题目】已知二次函数
满足
(
),且
.
(1)求
的解析式;
(2)若函数
在区间
上是单调函数,求实数
的取值范围;
(3)若关于
的方程
有区间
上有一个零点,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下四个命题:
①“若
,则
”的逆否命题为真命题
②“
”是“函数
在区间
上为增函数”的充分不必要条件
③若
为假命题,则
,
均为假命题
④对于命题
:
,
,则
为:
,![]()
其中真命题的个数是( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数
且f(x)的最小值为0.
(1)求a的值;
(2)若数列
满足a1=1,an+l=f(an)+2(n∈Z+),记Sn=[a1]+[a2]+…+[an],[m]表示不超过实数m的最大整数,求Sn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
是定义在区间
上的奇函数,且
,若对于任意的m,
有
.
(1)判断函数的单调性(不要求证明);
(2)解不等式
;
(3)若
对于任意的
,
恒成立,求实数t的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com