精英家教网 > 高中数学 > 题目详情
如图,在正方体ABCD-A1B1C1D1中,E为AB中点.
(1)求直线AD和直线B1C所成角的大小;
(2)求证:平面EB1D⊥平面B1CD.
考点:平面与平面垂直的判定,异面直线及其所成的角
专题:综合题,空间位置关系与距离,空间角
分析:(1)建立坐标系,设正方体的棱长为2,求出
DA
=(2,0,0),
B1C
=(-2,0,-2),利用向量的夹角公式,即可求直线AD和直线B1C所成角的大小;
(2)求出平面EB1D的法向量,平面B1CD的法向量,证明其数量积为0,即可证明结论.
解答: (1)解:建立如图所示的坐标系,设正方体的棱长为2,则D(0,0,0),A(2,0,0),C(0,2,0),B1(2,2,2),
DA
=(2,0,0),
B1C
=(-2,0,-2),
∴cos<
DA
B1C
>=|
4
2•
4+4
|=
2
2

∴直线AD和直线B1C所成角为45°;
(2)证明:设平面EB1D的法向量为
m
=(x,y,z),则
∵E(2,1,0),
EB1
=(0,1,2).
ED
=(-2,-1,0),
y+2z=0
-2x-y=0
,∴
m
=(1,-2,1).
同理平面B1CD的法向量为
n
=(1,0,-1),
m
n
=1-1=0,
∴平面EB1D⊥平面B1CD.
点评:本题考查异面直线及其所成的角、平面与平面垂直的判定,考查向量法的运用,考查学生分析解决问题的能力,正确求向量是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,∠ACB=45°,BC=6过A作AD⊥BC,垂足D在线段BC上且异于点B,沿AD将△ABD折起,组成三棱锥A-BCD,过点D作DE⊥平面ABC,且点E为三角形ABC的垂心.
(1)求证:△BDC为直角三角形.
(2)当BD的长为多少时,三棱锥A-BCD的体积最大?并求出其最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲袋和乙袋装有大小相同的红球和白球,已知甲袋中有m个球,乙袋中有2m个球,从甲袋中摸出1个球为红球的概率为
1
5
,从乙袋中摸出1个球为红球的概率为P.
(Ⅰ)若m=10,从甲袋中红球的个数;
(Ⅱ)设P=
1
5
,若从甲、乙两袋中各自有放回地模球,从甲袋中模1次,从乙袋中摸2次,每次摸出1个球,设ξ表示摸出红球的总次数,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且满足Sn=-
1
2
(an-2),bn=
2Sn
an
+1.
(1)求数列{an}、{bn}的通项公式.
(2)记Cn=log3b1+log3b2+…+log3bn,任取n∈N*是否存在正整数m,使
1
C1
+
1
C2
+…+
1
Cn
m
3
都成立?若存在,求出m的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sinxcos(x-
π
4
)-
2
2

(Ⅰ)求f(x)的最小正周期;
(Ⅱ)设α∈(0,
π
2
),且f(
α
2
+
π
8
)=
3
5
,求tan(α+
π
4
).

查看答案和解析>>

科目:高中数学 来源: 题型:

某产品的广告支出x(单位:万元)与销售收入y(单位:万元)之间有如下数据:
广告支出x(单位:万元) 1 2 3 4
销售收入y(单位:万元) 12 28 42 56
根据以上数据算得:
4
i=1
yi=138,
4
i=1
xiyi=418
(Ⅰ)求出y对x的线性回归方程
y
=
b
x+
a
,并判断变量与y之间是正相关还是负相关;
(Ⅱ)若销售收入最少为144万元,则广告支出费用至少需要投入多少万元?
(参考公式:
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x2i-n
.
x
2
a
=
.
y
-
b
.
x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数Z1=a+i,Z2=1+bi(a,b∈R),i为虚数单位.
(Ⅰ)若a=1,b=2,求
Z2
Z1

(Ⅱ)若Z1+Z2为纯虚数,Z1-Z2为实数,求a,b.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(-1,0)、B(1,0),动点P满足:∠APB=2θ,且|PA|•|PB|cos2θ=1
(1)求动点P的轨迹C的方程;
(2)已知圆W:x2+y2=
2
3
的切线l与轨迹C相交于P,Q两点,求证:以PQ为直径的圆经过坐标原点O.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知矩阵A=
a2
1b
有一个属于特征值1的特征向量
α
=
2
-1

①求矩阵A;
②已知矩阵B=
1-1
01
,点O(0,0),M(2,-1),N(0,2),求△OMN在矩阵AB的对应变换作用下所得到的△O′M′N′的面积.

查看答案和解析>>

同步练习册答案