精英家教网 > 高中数学 > 题目详情
如图⊙O的直径为CA,OB⊥CA,M在OA上,连接BM交⊙O于N,以N为切点,作⊙O的切线交CA延长线于P.
(Ⅰ)求证PM=PN;
(Ⅱ)若⊙O的半径为2,PM=
5
,求AM长.
考点:与圆有关的比例线段
专题:立体几何
分析:(Ⅰ)连接ON,根据切线的性质可得ON⊥PN,由同角的余角相等,可得∠PMN=∠PNM,进而得到PM=PN;
(Ⅱ):(Ⅱ)设AM=x,则PA=
5
-x,PC=4+
5
-x,根据PM=PN=
5
,结合切割线定理,构造关于x的方程,解方程,可得AM的长.
解答: 证明:(Ⅰ)连接ON,

∵PN与圆O相切,N为切点,
∴ON⊥PN,
故∠PNM+∠ONM=90°,
又∵OB⊥CA,
∴∠OMB+∠OBM=90°,
又∵∠OBM=∠ONM,
∴∠OMB=∠PNM,即∠PMN=∠PNM,
∴PM=PN;
解:(Ⅱ)设AM=x,
∵⊙O的半径为2,PM=PN=
5

∴PA=
5
-x,PC=4+
5
-x,
由切割线定理可得:PN2=PA•PB,
即5=(
5
-x)(4+
5
-x),
解得x=
5
-1
,或x=
5
+5(舍),
故AM=
5
-1
点评:本题考查的知识点是切线的性质,切割线定理,难度不大,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

椭圆
x2
16
+
y2
9
=1中,以点M(-1,2)为中点的弦所在的直线斜率为(  )
A、
9
16
B、
9
32
C、
9
64
D、-
9
32

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1、F2分别是椭圆
x2
4
+y2=1的左右焦点,若P是第一象限内该椭圆上的一点,且向量
PF1
PF2
=-
5
4
,则点,P的坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

从1、2、3…n中任取三个不同的数,则取出的三个数可作为三角形三边边长的概率为
 
.(用n表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

过双曲线
y2
3
-x2=1的下焦点F作抛物线C:x2=2py(p>0)的两条切线,切点分别为AB,若FA⊥FB,则抛物线的方程为(  )
A、x2=2y
B、x2=4y
C、x2=6y
D、x2=8y

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b∈[-2,2],在此范围内任取数对(a,b),能使函数f(x)=x3-3x+a+b,有三个不同零点的概率是(  )
A、
1
4
B、
1
2
C、
2
3
D、
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆中心在原点,焦点在x轴上,椭圆短轴的一个顶点B与两个焦点F1,F2组成的△BF1F2的周长为4+2
2
,且∠BF1F2=45°,求这个椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=logax在[2,8]上的最大值与最小值之和为4.
(1)已知g(x)为奇函数,当x≥0时,g(x)=f(x+1),求x<0时,求g(x)的解析式;
(2)解关于x的不等式:-1<g(x)<
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

函数求导:f(x)=
ln(3x2+4x)

查看答案和解析>>

同步练习册答案