【题目】为了得到函数
,x∈R的图象,只需把函数y=2sinx,x∈R的图象上所有的点( )
A.向左平移
个单位长度,再把所得各点的横坐标缩短到原来的
倍纵坐标不变)
B.向右平移
个单位长度,再把所得各点的横坐标缩短到原来的
倍(纵坐标不变)
C.向左平移
个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)
D.向右平移
个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)
科目:高中数学 来源: 题型:
【题目】已知圆
:
过椭圆
:
(
)的短轴端点,
,
分别是圆
与椭圆
上任意两点,且线段
长度的最大值为3.
(Ⅰ)求椭圆
的方程;
(Ⅱ)过点
作圆
的一条切线交椭圆
于
,
两点,求
的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)=﹣
x3+
x2+2ax.
(1)若f(x)在(
,+∞)上是单调减函数,求实数a的取值范围.
(2)当0<a<2时,f(x)在[1,4]上的最小值为﹣
,求f(x)在该区间的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a∈R,函数f(x)═log2(
+a).
(1)若f(1)<2,求实数a的取值范围;
(2)设函数g(x)=f(x)﹣log2[(a﹣4)x+2a﹣5],讨论函数g(x)的零点个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知偶函数f(x)的定义域为R,且在(﹣∞,0)上是增函数,则f(﹣
)与f(a2﹣a+1)的大小关系为( )
A.f(﹣
)<f(a2﹣a+1)
B.f(﹣
)>f(a2﹣a+1)??
C.f(﹣
)≤f(a2﹣a+1)
D.f(﹣
)≥f(a2﹣a+1)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)的图象关于y轴对称,并且是[0,+∞)上的减函数,若f(lgx)>f(1),则实数x的取值范围是( )
A.![]()
B.![]()
C.![]()
D.(0,1)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知圆
,椭圆
,
为椭圆
的右顶点,过原点且异于
轴的直线与椭圆
交于
两点,
在
轴的上方,直线
与圆
的另一交点为
,直线
与圆
的另一交点为
,
![]()
(1)若
,求直线
的斜率;
(2)设
与
的面积分别为
,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)是定义在R上的偶函数,对x∈R,都有f(x﹣2)=f(x+2),且当x∈[﹣2,0]时,f(x)=(
)x﹣1,若在区间(﹣2,6]内关于x的方程f(x)﹣loga(x+2)=0(a>1)恰有3个不同的实数根,则a的取值范围是( )
A.(2,3)
B.![]()
C.![]()
D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com