分析 由已知可得sinC=sin(A+B)=sinAcosB+cosAsinB=-sinAcosB,从而化简得tanB=-2tanA,由tanC=-tan(A+B)利用tanA表示,根据基本不等式求tanC的最大值
解答 解:由$\frac{sinC}{sinA}$=cos(A+C)=-cosB,
所以:sinC=sin(A+B)=sinAcosB+cosAsinB=-sinAcosB,
所以:cosAsinB=-2sinAcosB,
所以:tanB=-2tanA,
因为:tanC=-tan(A+B)=-$\frac{tanA+tanB}{1-tanAtanB}$=$\frac{tanA}{1+2ta{n}^{2}A}$=$\frac{1}{\frac{1}{tanA}+2tanA}$$≤\frac{1}{2\sqrt{2}}$=$\frac{\sqrt{2}}{4}$;当且仅当$\frac{1}{tanA}=2tanA$时等号成立.
所以tanC的最大值是$\frac{\sqrt{2}}{4}$;
故答案为:$\frac{\sqrt{2}}{4}$.
点评 本题主要考查了两角和与差的余弦函数公式、正弦函数公式、正切函数公式的应用,考查了基本不等式的应用,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\sqrt{3}$ | C. | $\frac{3}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 20 | B. | 40 | C. | 60 | D. | 80 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com