精英家教网 > 高中数学 > 题目详情
4.抛物线y2=2px(p>0)上的动点Q到焦点的距离的最小值为1,则p=2.

分析 利用抛物线的顶点到焦点的距离最小,即可得出结论.

解答 解:因为抛物线y2=2px(p>0)上的动点Q到焦点的距离的最小值为1,
所以$\frac{p}{2}$=1,
所以p=2.
故答案为:2.

点评 本题考查抛物线的方程与性质,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=4,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,($\overrightarrow{a}$-$\overrightarrow{c}$)•($\overrightarrow{b}$-$\overrightarrow{c}$)=0,求|$\overrightarrow{c}$|最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图所示,在正四棱锥V-ABCD中,AB=4,E、F分别为AB、VC边的中点,直线VE与面VBC所成角为$\frac{π}{6}$.
(1)求证:EF∥平面VAD.
(2)求二面角E-VD-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在锐角三角形 A BC中,tanA=$\frac{1}{2}$,D为边 BC上的点,△A BD与△ACD的面积分别为2和4.过D作D E⊥A B于 E,DF⊥AC于F,则$\overrightarrow{{D}{E}}$•$\overrightarrow{DF}$=-$\frac{16}{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在(2x+$\frac{1}{x^2}$)6的二项式中,常数项等于240(结果用数值表示).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.记方程①:x2+a1x+1=0,方程②:x2+a2x+2=0,方程③:x2+a3x+4=0,其中a1,a2,a3是正实数.当a1,a2,a3成等比数列时,下列选项中,能推出方程③无实根的是(  )
A.方程①有实根,且②有实根B.方程①有实根,且②无实根
C.方程①无实根,且②有实根D.方程①无实根,且②无实根

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)经过点$(2,\sqrt{2})$,且离心率为$\frac{{\sqrt{2}}}{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设经过椭圆C左焦点的直线交椭圆于M、N两点,线段MN的垂直平分线交y轴于点P(0,m),求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若函数f(x)在(0,1)内有一个零点,要使零点的近似值的精确度为0.01,则需对区间(0,1)至多二等分(  )
A.5次B.6次C.7次D.8次

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知△ABC的内角A,C满足$\frac{sinC}{sinA}$=cos(A+C),则tanC的最大值为$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

同步练习册答案