精英家教网 > 高中数学 > 题目详情

已知a=(2cosx,cos2x),b=(sinx,-),f(x)=a·b.
(1)求f(x)的振幅、周期,并画出它在一个周期内的图象;
(2)说明它可以由函数y=sinx的图象经过怎样的变换得到.

(1)周期T=π,振幅A=2

(2)见解析

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求的最小正周期.
(2)若将的图象向右平移个单位,得到函数的图象,求函数在区间上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=(2cos2x-1)sin2x+cos4x.
(1)求f(x)的最小正周期及最大值;
(2)若α∈(,π),且f(α)=,求α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=(sinωx+cosωx)2+2cos2ωx(ω>0)的最小正周期为.
(1)求ω的最小正周期;
(2)若函数y=g(x)的图象是由y=f(x)的图象向右平移个单位长度得到,求y=g(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知a>0,函数f(x)=-2asin+2a+b,当x∈时,-5≤f(x)≤1.
(1)求常数a、b的值;
(2)设g(x)=f且lgg(x)>0,求g(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数y="Asin(ωx+φ)" (A>0,ω>0,|φ|<π)的 一段图象如图所示

(1)求函数的解析式;
(2)求这个函数的单调增区间。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=2sin xcos x+cos 2x(x∈R).
(1)当x取什么值时,函数f(x)取得最大值,并求其最大值;
(2)若θ为锐角,且f,求tan θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知α、β均为锐角,且sinα=,tan(α-β)=-.
(1) 求sin(α-β)的值;
(2) 求cosβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知cos(π+α)=-,且角α在第四象限,计算:
(1)sin(2π-α);
(2)(n∈Z).

查看答案和解析>>

同步练习册答案