精英家教网 > 高中数学 > 题目详情
7.设F1,F2为椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦点,过F2在的直线交椭圆于A,B两点,AF1⊥AB且AF1=AB,则椭圆C的离心率为$\sqrt{6}$-$\sqrt{2}$.

分析 设|AF1|=t,则|AB|=t,|F1B|=$\sqrt{2}$t,由椭圆定义有|AF1|+|AB|+|F1B|=4a,求得|AF2|关于t的表达式,进而利用韦达定理可求得a和c的关系

解答 解:设|AF1|=t,则|AB|=t,|F1B|=$\sqrt{2}$t,由椭圆定义有:|AF1|+|AF2|=|BF1|+|BF2|=2a
∴|AF1|+|AB|+|F1B|=4a,
化简得($\sqrt{2}$+2)t=4a,t=(4-2$\sqrt{2}$)a
∴|AF2|=2a-t=(2$\sqrt{2}$-2)a
在Rt△AF1F2中,|F1F2|2=(2c)2
∴[(4-2$\sqrt{2}$)a]2+[(2$\sqrt{2}$-2)a]2=(2c)2
∴($\frac{c}{a}$)2=9-6$\sqrt{2}$=($\sqrt{6}$-$\sqrt{2}$),
∴e=$\sqrt{6}$-$\sqrt{2}$,
故答案为:$\sqrt{6}$-$\sqrt{2}$.

点评 本题主要考查了椭圆的简单性质,考查了学生对椭圆定义的理解和运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.如图,在四棱锥S-ABCD中,四边形ABCD为矩形,E为SA的中点,SB=2,BC=3,$SC=\sqrt{13}$.
(Ⅰ)求证:SC∥平面BDE;
(Ⅱ)求证:平面ABCD⊥平面SAB.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.f(n)=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$(n∈N*),计算f(2)=$\frac{3}{2}$,f(4)>2,f(8)>$\frac{5}{2}$,f(16)>3,f(32)>$\frac{7}{2}$,推测当n≥2时,有f(2n)≥$\frac{n+2}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.函数f(x)=6cos2$\frac{ωx}{2}$+$\sqrt{3}$sinωx-3(ω>0)在一个周期内的图象如图所示,A为图象的最高点,B,C为图象与x轴的交点,且△ABC为正三角形.
(1)求ω的值及函数f(x)的值域;
(2)若f(x0)=$\frac{8\sqrt{3}}{5}$,且x0∈(-$\frac{10}{3}$,$\frac{2}{3}$),求f(x0+1)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.某小卖部销售某品牌的饮料的零售价与销量间的关系统计如下:
单价x(元)3.03.23.43.63.84.0
销量y(瓶)504443403528
已知x,y的关系符合回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}{b}$=-20.若该品牌的饮料的进价为2元,为使利润最大,零售价应定为3.75元.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知平面直角坐标系xoy,以O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C的参数方程为$\left\{\begin{array}{l}x=2cosφ\\ y=2+2sinφ\end{array}\right.(φ为参数)$.点A,B是曲线C上两点,点A,B的极坐标分别为$({ρ_1},\frac{π}{3}),({ρ_2},\frac{5π}{6})$.则|AB|=(  )
A.4B.$\sqrt{7}$C.$4\sqrt{7}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若sinα<0,tanα>0,则α的终边在(  )
A.第一象限B.、第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=(2-x)ex-ax-a,若不等式f(x)>0恰有两个正整数解,则a的取值范围是(  )
A.[-$\frac{1}{4}$e3,0)B.[-$\frac{1}{2}$e,0)C.[-$\frac{1}{4}$e3,$\frac{e}{2}$)D.[-$\frac{1}{4}$e3,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数$f(x)=cos(\frac{π}{2}+x)+{sin^2}(\frac{π}{2}+x)$,x∈[-π,0],则f(x)的最大值为(  )
A.$\frac{3}{4}$B.$\frac{5}{4}$C.1D.2$\sqrt{2}$

查看答案和解析>>

同步练习册答案