精英家教网 > 高中数学 > 题目详情
12.已知平面直角坐标系xoy,以O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C的参数方程为$\left\{\begin{array}{l}x=2cosφ\\ y=2+2sinφ\end{array}\right.(φ为参数)$.点A,B是曲线C上两点,点A,B的极坐标分别为$({ρ_1},\frac{π}{3}),({ρ_2},\frac{5π}{6})$.则|AB|=(  )
A.4B.$\sqrt{7}$C.$4\sqrt{7}$D.5

分析 求出A,B的坐标,利用两点间的距离公式,即可得出结论.

解答 解:曲线C的参数方程为$\left\{\begin{array}{l}x=2cosφ\\ y=2+2sinφ\end{array}\right.(φ为参数)$.
普通方程为x2+(y-2)2=4.极坐标方程为ρ=4sinθ,
θ=$\frac{π}{3}$,ρ1=2$\sqrt{3}$,∴A($\sqrt{3}$,3),
θ=$\frac{5π}{6}$,ρ2=2,∴B(-$\sqrt{3}$,1),
∴|AB|=$\sqrt{(2\sqrt{3})^{2}+{2}^{2}}$=4,
故选A.

点评 本题考查三种方程的转化,考查两点间的距离公式,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.如图椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,且右焦点F到左顶点A的距离为4+2$\sqrt{2}$.
(1)求椭圆C的标准方程;
(2)设P为椭圆C上位于x轴上方的点,直线PA交y轴于点M,过点F作MF的垂线,交y轴于点N.
(i)当直线PA的斜率为$\frac{1}{2}$时,求△FMN的外接圆的方程;
(ii)设直线AN交椭圆C于另一点Q,求△APQ的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知复数$z=\frac{5}{2-i}$(i是复数单位),则复数z为(  )
A.2+iB.-2+iC.-2-iD.2-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知球的直径SC=4,A、B 是该球面上的两点且AB=2$\sqrt{2}$,∠ASC=30°,∠SCB=45°,则三棱锥S-ABC的体积为(  )
A.$\sqrt{3}$B.$\sqrt{2}$C.$\frac{2}{3}\sqrt{3}$D.$\frac{4}{3}\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设F1,F2为椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦点,过F2在的直线交椭圆于A,B两点,AF1⊥AB且AF1=AB,则椭圆C的离心率为$\sqrt{6}$-$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列哪个命题的逆命题为真命题的是(  )
A.若a>b,则ac>bcB.若a2>b2,则a>b>0
C.若|x-3|>1,则2<x<4D.若|x2-3|>1,则$\sqrt{2}<x<2$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.有一段“三段论”,其推理是这样的:
对于可导函数f(x),若f′(x0)=0,则x=x0是函数f(x)的极值点…大前提因为函数f(x)=x3满足f′(0)=0,…小前提所以x=0是函数f(x)=x3的极值点”,结论以上推理(  )
A.大前提错误B.小前提错误C.推理形式错误D.没有错误

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.学校举行班级篮球赛,某名运动员每场比赛得分记录的茎叶图如下:
(1)求该运动员得分的中位数和平均数;
(2)估计该运动员每场得分超过10分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.方程$|sin\frac{π}{2}x|=lg|x|$有多少个根?(  )
A.9B.10C.18D.20

查看答案和解析>>

同步练习册答案